# 海水中の人工放射性微量ウラン同位体測定とその応用

#### 1. はじめに

1950-1960年代の冷戦時代に行われた大気圏内 核実験の結果,"グローバルフォールアウト核種" として核反応生成核種や核分裂生成核種が全球的 に供給された.その大部分が1963-64年に局時的 に降下したことは良く知られており,代表的な核 分裂核種であるセシウム137 (<sup>137</sup>Cs:半減期 30.2 年)は,北半球に765 PBq もたらされたと近年 再見積されている (Aoyama et al., 2006).この ように人工放射性核種は,注目する系への導入起 源や時期さらには供給量が明らかである場合が多 いため,環境中の物質循環を追う有用なトレー サーとなりうる.

海水循環を明らかにするトレーサーとしては. 上述した<sup>137</sup>Csが精力的に利用されてきた. Cs は アルカリ金属であるため水に溶けやすく、グロー バルフォールアウトにより海洋表層に供給された 後,安定して海水中に溶存する.従って、海水中 における<sup>137</sup>Csの濃度分布を明らかにすることで、 海水の沈み込みや循環についての情報を得ること ができる.しかし、大気圏内核実験により海洋に 供給された<sup>137</sup>Csは、半減期 30 年に従った原子核 の崩壊により、海水中の現存量は極微量である. そのため、精度良い測定には、数十~数百リット ル以上の海水からCsを濃集し、通常よりも100-200 倍バックグラウンドの低い検出器を必要とす る. 今後さらに<sup>137</sup>Csの測定は困難になる事が予 想され、経時観測による海水循環の解明には、こ れに代わる新たなトレーサーを早急に見つけるこ とが必要不可欠であった. そこで着目したのが <sup>236</sup>Uである.

#### 坂口 綾\*

<sup>236</sup>U(半減期 2.342 ×  $10^7$  年)は、近年の機器分 析技術、特に加速器質量分析(AMS)の進歩に より、一般環境試料においても比較的容易に定量 可能となりつつあり"環境中のU同位体"の一 つとして注目されている(例えば Boulyga and Heumann, 2006; Lee et al., 2008; Sakaguchi et al., 2009). ここでは、環境中<sup>236</sup>Uを新たな海水循環 トレーサーとして確立・利用を目指し、日本海に おいて進めてきた予備的な研究について、現在ま で明らかになった部分に関して紹介する.

# 2. 試料採取・分析 【海水、浮遊懸濁物質】

日本海における<sup>236</sup>U濃度の鉛直・水平分布を, 溶存態と粒子態のそれぞれについて明らかにする ために,海水および浮遊懸濁物質を採取した. 2010年夏季に実施された GEOTRACES 研究航 海(白鳳丸 KH-10-2 航海)にて日本海の7地点 よりそれぞれ深度ごとに海水20 Lを採取した (Fig. 1). すべての海水試料は,採取後直ちに孔 径 0.45 μm のフィルターでろ過処理を行い,フィ ルター上の残留物を浮遊懸濁物試料とした.

海水試料(20 L)から,リンモリブデン酸アン モニウム(AMP)濃縮法により,CsをAMPの 吸着体として回収し,γ線スペクトロメトリーで <sup>137</sup>Csを定量した.AMP沈殿後の上澄みから,U を鉄共沈試料として回収した.質量分析のための U精製およびICP-MS,AMS測定の詳細につい てはSakaguchi et al.,(2009; 2013)を参照された い.

浮遊懸濁物はフィルターのまま全分解し、化学

\*筑波大学アイソトープ環境動態研究センター

第37回石橋雅義先生記念講演会(平成29年4月22日)講演



Fig. 1. Sampling sites of surface soil, seawater, suspended solid, bottom sediments and coral core at the pan Japan Sea.

分離後に<sup>137</sup>CsとU同位体を測定した. 各層ごと に採取した 20 Lの海水から得た懸濁粒子量が少 なく,<sup>236</sup>Uの検出が困難であることが予想された ため,表層(0-250 m),上部深層水(250-1,000 m), 深層水(1,000-2,000 m),底層水(2,000 m-bottom)層ごとに懸濁粒子を合わせて試料処 理を行った.

#### 【海底堆積物】

粒子態として水柱から海底に除去された<sup>236</sup>Uの 割合を見積もるため,同航海中に孔径9 cm のマ ルチプルコアラーで海底堆積物試料を採取した (Fig. 1).採取後,直ちに船上にて表層から1 cm ごとに5 cm まで切り分けた.

105℃ で 24 時間乾燥した海底堆積物試料を粉砕し,均質化後,懸濁物質と同様な方法で試料処理・分析を行った.

# 【サンゴ】

日本海に導入された<sup>236</sup>Uの供給量および供給変 遷史を復元するため,2012年11月に対馬海流上 に位置する壱岐島にて(N33°48'22.5"E129° 40'02.9") 直径5 cm, 全長89 cmのサンゴ (*Dipsastraeaspeciosa*) コア試料を採取した.

コアは、約20~25 cm に分割した後、約5 mm 厚のスラブ片を作成した. このスラブのX線イ メージングと画像処理により密度バンドを数えた. また、サンゴー個体の莢壁に沿って Sr/Ca 比を LA-ICP-MS で分析した. 目視による密度バンド 確認と Sr/Ca 比変動より、成長年輪を確認し、 表層から 54 cm 長(2012-1934 年)を分析試料と した. 年輪ごとに切り分け酸で分解後,他の試料 と同様に放射性核種の定量を行った. サンゴ試料



**Fig. 2.** Depth profiles of <sup>236</sup>U (atom kg<sup>-1</sup>) and <sup>137</sup>Cs (Bq kg<sup>-1</sup>) concentrations in the water column. Error bars are one standard deviation.

分析については, Sakaguchi et al. (2016) や Nomura et al. (2017) を参照されたい.

# 3. 結果と考察

#### 【日本海における<sup>236</sup>Uおよび<sup>137</sup>Cs濃度の鉛直分布】

海水試料中の<sup>236</sup>U 濃度を<sup>137</sup>Cs 濃度と共に Fig. 2に示す.<sup>236</sup>U濃度は、表層付近で最大値(12.7-1.06) × 10<sup>6</sup> atom kg<sup>-1</sup>となり, 深度と共に急激に 減少する傾向がみられ,底層付近で(0.15-0.19) × 10<sup>6</sup> atom kg<sup>-1</sup>という最小値を得た. この<sup>236</sup>U 濃度の深度分布は、天然に存在する U 同位体<sup>238</sup>U 濃度の鉛直に一様な深度分布とは著しく異なり, <sup>236</sup>Uが日本海においては未だ定常状態に至ってい ないということを示している.また,各地点にお ける海水中の<sup>236</sup>U/<sup>238</sup>U原子比は、極大値が表層付 近で(1.75-1.32)×10<sup>-9</sup>、極小値が底層付近で (0.20-0.24)×10<sup>-9</sup>の範囲内にあり, 観測された日 本海の海水中<sup>236</sup>U/<sup>238</sup>U比は,北海やアイリッシュ 海のそれと比較すると1~数桁低いものの、大西 洋や太平洋、北極海で最近観測された値と同等な レベルであった (例えば Casacuberta et al., 2016).

各層における懸濁粒子中の<sup>236</sup>U 濃度と,対応す る層ごとに平均化した海水中の溶存<sup>236</sup>U 濃度を Table 1 に示す.各層の懸濁粒子中の<sup>236</sup>U 濃度は 250-1,000 m においては検出限界以下,またそれ 以外の地点では(6.95-3.67)×10<sup>3</sup> atom kg<sup>-1</sup>とい う結果が得られた.この値は海水中の<sup>236</sup>U 濃度の 約 1/10,000-1/1,000 であり,<sup>236</sup>U は懸濁粒子と反 応性を持たず,大部分の<sup>236</sup>U が溶存態として海水 中に存在していることが分かった.

| Table 1. Co      | ncentration | of | <sup>236</sup> U | in | seawater | and |
|------------------|-------------|----|------------------|----|----------|-----|
| suspended solid. |             |    |                  |    |          |     |

| Depth        | <sup>236</sup> U in SW      | <sup>236</sup> U in SS      |
|--------------|-----------------------------|-----------------------------|
| (m)          | $(10^6 \text{ atom/kg-SW})$ | $(10^3 \text{ atom/kg-SW})$ |
| 20-250       | $9.94 \pm 0.23$             | $6.95 \pm 6.04$             |
| 250-1,000    | $9.46 \pm 0.26$             | N.D.                        |
| 1,000-2,000  | $5.63 \pm 0.23$             | $3.67 \pm 0.97$             |
| 2,000-bottom | $2.20 \pm 0.08$             | $4.98 \pm 1.65$             |

N.D. :Not Detected

Table 2. <sup>236</sup>U and <sup>137</sup>Cs inventories, and <sup>236</sup>U/<sup>137</sup>Cs ratio in seawater column.

| Sampling | <sup>236</sup> U                    | <sup>137</sup> Cs            | <sup>236</sup> U/ <sup>137</sup> Cs |
|----------|-------------------------------------|------------------------------|-------------------------------------|
| site     | $(10^{13} \text{ atom}/\text{m}^2)$ | $(10^3\text{Bq}/\text{m}^2)$ | $(10^9 \text{ atom/Bq}^1)$          |
| CR2      | $1.56 \pm 0.06$                     | $2.17 \pm 0.10$              | $7.17 \pm 0.46$                     |
| CR17     | $1.37 \pm 0.06$                     | $2.35 \pm 0.06$              | $5.84 \pm 0.31$                     |
| CR34     | $0.58 \pm 0.05$                     | $0.58 \pm 0.03$              | $9.97 \pm 0.93$                     |
| CR41     | $1.63 \pm 0.09$                     | $2.05 \pm 0.07$              | $7.96 \pm 0.50$                     |
| CR47     | $1.59 \pm 0.07$                     | $1.98 \pm 0.10$              | $8.05 \pm 0.54$                     |
| CR66     | $1.44 \pm 0.06$                     | $1.52 \pm 0.06$              | $9.46 \pm 0.52$                     |
| CR58     | $1.37 \pm 0.08$                     | $1.40~\pm~0.05$              | $9.82 \pm 0.71$                     |

## 【日本海における<sup>236</sup>U,<sup>137</sup>Cs インベントリ】

各採取地点の水柱<sup>236</sup>U, <sup>137</sup>Cs インベントリおよ び<sup>236</sup>U/<sup>137</sup>Cs 比はそれぞれ(0.58–1.63)×10<sup>13</sup> atom m<sup>-2</sup>,(0.58–2.35)×10<sup>3</sup> Bq m<sup>-2</sup>,(5.84–9.97)×10<sup>9</sup> atom Bq<sup>-1</sup>であった(Table 2). これらは,国内 の土壌試料測定で得られたインベントリ値(坂口 ら,2014)と近い値である.しかし,インベント リ,比ともに海洋 – 陸上試料で完全に一致してい るとは言えず,特に海洋で高い<sup>236</sup>U/<sup>137</sup>Cs 比が得 られているのは興味深い.

海底堆積物中からも微量の<sup>236</sup>Uが検出された. 各地点の堆積物中<sup>236</sup>Uインベントリは(0.80~ 1.40)×10<sup>11</sup> atom m<sup>2</sup>と見積もられた.これは, 水柱の<sup>236</sup>Uインベントリ(0.58-1.63)×10<sup>13</sup> atom m<sup>-2</sup>(Table 2)に比べて約1/100であり,粒子態 として海底に除去されたのは水柱に存在する量の 極わずかであることが分かった.一方,堆積物中 の<sup>137</sup>Csインベントリは海水中の<sup>137</sup>Csインベント リに比べて約1/40であり,<sup>236</sup>Uと比較すると2 倍以上高い除去率である.海洋におけるCsの詳 細なスキャベンジング過程はいまだ明らかになっ てはいないが,今回の結果から<sup>236</sup>Uは<sup>137</sup>Csより も溶存態として安定に海水中に存在しており,海 水循環トレーサーとしての絶対必要条件を満たし ていると言える.

# 【日本海への<sup>236</sup>U 導入史復元】

壱岐島で採取したサンゴコア試料から復元された<sup>236</sup>U/<sup>238</sup>U比をFig.3に示す.U同位体比は 1950年代前半から急激に上昇し,1959年に最大



Fig. 3. <sup>236</sup>U/<sup>238</sup>U atom ratio in surface water of the Japan Sea which was reconstructed from the coral core sample from Iki-island.

値を示した.これまで、日本海への<sup>236</sup>U供給は 1960年代の大気圏内核実験によるグローバル フォールアウトとして大気から表層環境への導入 のみが考えられていた (Sakaguchi et al., 2013; 坂 口ら, 2013). 実際, キューバで採取したサンゴ コア試料からも 1963-64 年の<sup>236</sup>U 導入量最大値が 確認されている (Winkler et al., 2012). しかし、 日本海で得られた導入史においてはそれと異なる 結果が得られた.これは、太平洋核実験場で 1950年代から盛んに行われた水爆実験により生 成した<sup>236</sup>Uが,北赤道海流,黒潮を経て対馬海流 として日本海に導入されたと考えられる. 前述し たように,土壤中の<sup>236</sup>U,<sup>137</sup>Cs インベントリおよ び<sup>236</sup>U/<sup>137</sup>Cs 比が海水中のそれと完全に一致しな いのも、236Uと137Csの起源や導入年代が異なる 事が一つの原因として挙げられる。2010年のサ ンゴ年輪試料から得られた<sup>236</sup>U/<sup>238</sup>U比およびこの 比から計算された表層海水中の<sup>236</sup>U濃度は,2010 年に日本海表層海水試料で得られた値と一致し. このサンゴコア試料が日本海におけるU同位体 情報を大きな分別なく保存しているということも 証明された.このように,日本海においては<sup>236</sup>U の導入年代および導入量が詳細に復元された (Sakaguchi et al., 2016; Nomura et al., 2017).

## 【<sup>236</sup>Uの海水循環トレーサーとしての利用可能性】

<sup>137</sup>Cs 濃度の深度分布は<sup>236</sup>U のそれと同様に表 層付近で最大値(1.67-1.29 mBq kg<sup>-1</sup>)を示して いた. 濃度は深度と共に急激に減少し, 底層付近 で最小値 (0.17-0.33 mBq kg<sup>-1</sup>) が観測された. これらの濃度範囲は、過去に日本海で報告された 値と同程度か、それよりも低い値である(Ito et al., 2003; 田中ら, 2006). これは, 採取地点の違 いが濃度の違いとして反映されている可能性もあ るが、表層海水中<sup>137</sup>Cs が時間の経過と共に下方 へあるいは水平方向に拡散することによりその濃 度が減少しているのも原因の一つと考えられる (Miyao et al. 1998).<sup>236</sup>U および<sup>137</sup>Cs 濃度の深度 分布は、完全に一致はしていないものの、すべて の地点において同様な分布を示した. 両核種間の 濃度の関係は、標準偏差 2σ から外れた CR58 に おける 50 m と 700 m, CR47 における 50 m と 100 m を除くと R=0.9 以上の非常に良い相関が得 られている.

<sup>236</sup>U はサンゴ試料から復元された供給史に従い 表層海水に導入され,渦拡散等に従い深層にもた らされたとの仮定のもとに有限体積法により拡散 係数を計算した結果, 3.4-5.5 cm<sup>2</sup> s<sup>-1</sup> という値が 得られた. <sup>137</sup>Cs に関しては,グローバルフォー ルアウトにより 1963 年に局時的に表層海水に供 給されたと仮定し,拡散係数を求めると 2.7-5.0 cm<sup>2</sup> s<sup>-1</sup> が得られた. これらの値は過去に他の保 存性核種を用いて算出された値 (<sup>137</sup>Cs:1-10 cm<sup>2</sup> s<sup>-1</sup>;津旨ら, 1990; Nakano and Povinec, 2003; Ra 同位体:6 cm<sup>2</sup>/s;田中ら,2006)の範囲内であり, <sup>236</sup>U は他の保存性核種と同様の挙動を示している と言える.

以上の事より, 半減期が長い人工放射性核種の <sup>236</sup>Uは, 核実験場周辺を流れる北赤道海流から分 岐してきた対馬海流およびグローバルフォールア ウトにより日本海表層海水にもたらされ, 海水中 では保存性核種として海水と共に移行することが 示された. このように, 日本海においては<sup>236</sup>U が U そのものの挙動を理解するための指標とな るとともに, 海水循環を明らかにするトレーサー として有用であることが示された.

海水試料においては Eigl et al., (2016; 2017)

により新たな前処理法を確立し、これまでの 1/4-1/20の海水量で、従来要する半分の化学分 離時間、1/6の AMS 測定時間で Sakaguchi et al., (2009)と同様の測定精度を達成している.また、 試料採取・保存の簡便さ、採取・処理時の低コン タミネーションの可能性、サンゴ試料による調査 海域への供給史が詳細に復元可能であることなど 全て加味すると、今後、世界の大洋で海水循環ト レーサーとして広く普及していくことが期待され る.

#### 4. 結語

日本海およびその周辺地域において海水,懸濁 粒子および海底堆積物中に含まれる人工放射性核 種<sup>236</sup>Uを測定し,その濃度,蓄積量,存在状態を 明らかにすると共に,サンゴ試料から日本海への <sup>236</sup>U供給変遷史を復元した.これらの結果を<sup>137</sup>Cs と比較することで新たな海洋トレーサーとしての 確立・利用を試みた.

海水試料中の<sup>236</sup>U濃度を測定した結果,20L の海水から精度よく<sup>236</sup>U測定することに成功し, 現在は約1リットルの海水で短時間・高精度測定 を達成している.日本海に存在する<sup>236</sup>Uの起源は 1960年代のグローバルフォールアウトよりも, 1950年代に太平洋核実験場からの表層海水によ る輸送が主であり,海水中では溶存態として存在 していることが分かった.また<sup>236</sup>Uの深度分布は, これまで海水循環のトレーサーとして利用されて きた<sup>137</sup>Csと同様な分布を示しており(濃度相関 R>0.9),渦拡散係数においても類似した値が得 られた.これら結果より,人工放射性核種<sup>236</sup>Uは 半減期の短い<sup>137</sup>Csに代わり海洋循環トレーサー として利用可能であることが分かった.

日本海大和海盆以北における南北方向の<sup>236</sup>U深 度分布から,日本海北部の底層で顕著な濃度の増 加が確認されている.これは,<sup>236</sup>U濃度の高い表 層水の沈み込みによる痕跡である可能性が示唆さ れるが,今後,東西方向の観測や経時変化や他の 化学・物理パラメータと併せて解析することで, 日本海深層水循環に関する詳細な知見が得られる と期待できる.

# 5. 謝辞

本研究を遂行するに当たり, 試料採取や処理, 測定そして議論において多大なるご尽力・協力を 頂いた白鳳丸航海の全ての乗船者, 国立環境研究 所の山野博士・山川博士, 金沢学院大学の佐々木 博士, 北海道大学大学院理学研究院渡邊研究室の 皆様, 広島大学大学院理学研究科旧高橋研究室・ 旧坂口研究室の皆様, ウィーン大学の Steier 博士, 広島大学ものづくりセンター石佐古氏, 石飛氏, 佐藤氏に深謝致します. 本奨励賞受賞に当たって は金沢大学の中西名誉教授ならびに山本名誉教授 に推薦・ご指導ご鞭撻頂きました事, 感謝いたし ます.

#### 6. 文献

- Aoyama, M., Hirose, K., Igarashi, Y. (2006) Reconstruction and updating our understanding on the global weapons tests <sup>137</sup>Cs fallout. J. Environ. Monitor. 8, 431-438.
- Boulyga, S.F., and Heumann, K.G. (2006) Determination of extremely low <sup>236</sup>U/<sup>238</sup>U isotope ratios in environmental samples by sector-field inductively coupled plasma mass spectrometry using high-efficiency sample introduction. J. Environ. Radioact. 88, 1–10.
- Casacubertaa, N., Masquéb, P., Henderson, G., Rutgers, M., van-der-Loeff., Bauch, D., Vockenhuber, C., Daraoui, A., Walther, C., Synal, H-A., Christl, M. (2016) First <sup>236</sup>U data from the Arctic Ocean and use of <sup>236</sup>U/<sup>238</sup>U and <sup>129</sup>I/<sup>236</sup>U as a new dual tracer Earth and Planetary Science Letters 440, 127–134.
- Eigl, R., Steier, P., Winkler, S., Sakata, K., Sakaguchi, A. (2016) First study on <sup>236</sup>U in the Northeast Pacific Ocean using a new target preparation procedure for AMS

measurements, Journal of Environmental Radioactivity, 162–163, 244–250.

- Eigl, R., Steier, P., Sakata, K., Sakaguchi, A, (2017) Vertical distribution of <sup>236</sup>U in the North Pacific Ocean, Journal of Environmental Radioactivity, 169–170:70–78.
- Ito, T., Aramaki, T., Kitamura, T., Otosaka, S., Suzuki, T., Togawa, O., Kobayashi, T., Senjyu, T., Chaykovskaya, E.L., Karasev, E.V., Lishavskaya, T.S., Novichkov, V.P., Tkalin, A.V., Shcherbinin, A.F., Volkov, Y.N. (2003) Anthropogenic radionuclides in the Japan Sea: their distributions and transport processes, J. Environ. Radioactiv. 68, 249– 267.
- Ito, T., Otosaka, S., Kawamura, H. (2007) Estimation of total amounts of anthropogenic radionuclides in the Japan Sea, J. Nucl. Sci. Technol. 44, 912-922.
- Lee, S.H., Povinec, P.P., Wyse, E., Hotchkis M.A.C. (2008) Ultra-low-level determination of U-236 in IAEA marine reference materials by ICPMS and AMS. App. Radiat. Isot. 66, 823– 828.
- Nakano, M., and Povinec, P.P. (2003) Oceanic general circulation model for the assessment of the distribution of <sup>137</sup>Cs in the world ocean Deep Sea Research Part II: Topical Studies in Oceanography, 50, 17–21.
- Nomura, T., Sakaguchi, A., Steier, P., Eigl., R., Yamakawa, A., Takaaki Watanabe, Sasaki, K., Watanabe, T., Golser, R., Takahashi, Y., Yamano, H. (2017) Reconstruction of the temporal distribution of <sup>236</sup>U/<sup>238</sup>U in the Northwest Pacific Ocean using a coral core sample from the Kuroshio Current area,

Marine Chemistry, 190, 28-34.

- Miyao, T., Hirose, K., Aoyama, M., Igarashi, Y. (1998) Temporal variation of <sup>137</sup>Cs and <sup>239,240</sup>Pu in the Sea of Japan. J. Environ. Radioactivity, 40, 239–250.
- Sakaguchi, A., Kawai, K., Steier, P., Quinto, F., Mino, K., Tomita, J., Hoshi, M., Whitehead, N., Yamamoto, M. (2009) Sci. Total Environ., 407, 4238–4242.
- Sakaguchi, A., Kadokura, A., Steier, P., Takahashi, Y., Shizuma, K., Hoshi, M., Nakakuki, T., Yamamoto, M. (2013) Uranium-236 as a new oceanic tracer: a first depth profile in the Japan Sea and comparison with caesium-137, Earth Planet. Sci. Lett., 333, 165-170.
- Winkler, S., Steier, P., Carilli, J. (2012) Bomb fallout <sup>236</sup>U as a global oceanic tracer using an annually resolved coral core. Earth Planet. Sci. Lett., 359–360. 124–130.
- 坂口綾, 門倉彰伸, Peter Steier, 山本政儀, 坂 田昂平, 富田純平, 高橋嘉夫(2013)環境中 のウラン同位体 U-236 を利用した研究―海洋 循環トレーサーとしての確立を目指して, 分 析化学, 62, 1001-1012.
- 坂口 綾, Peter Steier, 山野博哉, 高橋嘉夫 (2014)新たな海水循環トレーサー確立—環 境中の人工ウラン同位体 U-236, 月間海洋 12 月号 pp. 81–93.
- 田中究,井上睦夫,御園生淳,小村和久(2006): 日本海大和堆および沿岸周辺海域における Ra-228, Ra-226 および Cs-137 濃度の鉛直分 布,地球化学,40,167-176.
- 津旨大輔, 鈴木浩, 三枝利有, 丸山康樹, 伊藤千浩, 渡部直人 (1990): 電力中央研究所報告
  U98029, p. 1–18.