バイカル湖での化学過程

杉山雅人*・木邑奈美・張田裕之助

[要旨] 1995、1998、1999年の3回に渡って、バイカル湖の栄養塩と主要・微量元素 の分布を調査した。その結果,多量の化学成分が河川からバイカル湖に負荷されてい ることが分かった。これらの多くは懸濁粒子として存在し、沿岸部での水質を支配し ていた。一方、沖域では栄養塩やいくつかの金属元素の分布に、生物活動の影響が色 濃く現れていた。これらの溶存態濃度の鉛直分布は海洋でのものと類似の傾向を示し、 深度とともに濃度が増加した。懸濁態濃度が極大となる水深は、クロロフィル-aが最 大値を示す水深と一致した。沖域の表水層における自生懸濁画分中のC:N:P比は Redfield比に近かった。しかし、湖水表面のC/P比とN/P比はともにRedfield比より高 く、バイカル湖の生物生産は基本的にリン制限にあると判断された。

1. 緒言

バイカル湖は数多くの陸水学的特徴を有 する他には類を見ない好適な湖沼学研究の 対象である。また、1600 mを超える世界に 最たる水深を持つ巨大湖であることから、 これまでは水塊の大きさが格段に異なるた めに比較研究の行われることが少なかった 湖沼学と海洋学を結ぶ接点となる可能性を 秘めた貴重な水圏科学のフィールドでもあ る。

ロシア東部に位置するバイカル湖は約 3000万年前にできたとされる世界最古の 湖である(森野浩・宮崎信之,1994)。現 在でも毎年幅2 cm、水深 6 mm の割合で拡 大していて、世界最大を誇る貯水量は地球 上の全淡水の20%に相当する。日本最大で ある琵琶湖と比べるとバイカル湖の姿が瞭 然となる(表 1)。

バイカル湖は巨大であるために水の交換 がきわめて遅く、その平均滞留時間は300 年を超える。しかし、強い表面吹送風が誘 発する深層水湧昇や初春のサーマルバーの 出現による表層水の沈降などにより、実質 的な深層水の交換速度は10年を下回ると も言われる(Weiss et al., 1991)。

バイカル湖の湖齢の長さは豊富な固有種 と古くて厚い堆積層につながっている。固 有種は1000を超える。その代表であるバ イカルアザラシは世界唯一の淡水アザラシ である。湖底堆積層の厚みは4000~6000 mに及ぶ。そこには湖の誕生以来の環境変 動が層序として残っている。

バイカル湖は優れた水質にある。一般に 湖沼は年月を経るにつれ富栄養化するが、 この湖の水はその湖齢にもかかわらず極め て清澄である。最大透明度の記録は40 m を超え、今でもこれに近い値がたびたび測 定される。

しかし、この湖でも人為的汚染による水 質悪化が進んでいる。栄養塩濃度からすれ

*京都大学総合人間学部 〒606-8501 京都市左京区吉田二本松町

表1 バイカル湖と琵琶湖の諸元.

		バイカル湖 ³	琵琶湖》
南北の長さ	(km)	639	63
最大幅	(km)	80	23
最大水深	(m)	1,643	104
平均水深	(m)	730	41
表面積	(km ²)	46,000	674
容積	(km ³)	23,000	28
流入水量	(km^3/y)	71	5.2
年齡	(万年)	3,000	400
固有種	(種)	1,000	50

◎森野・宮崎 (1994). ▷藤永・堀 (1982).

表 2 バイカル湖と琵琶湖における化学成分 (mmol/l).

	バイカル湖 ³	琵琶湖
Ca ²⁺	402	274
Mg ²⁺	126	85
Na^+	155	233
K^+	24	40
C1-	12	224
SO4 2-	57.4	71
アルカリ度	1093	550
SiO ₂	45.3	11.3
NO ₃ ⁻	6.33	7.3
P0, ³⁻	0.45	0.17

*Weiss et al. (1991); Falkner et al. (1991); Gurulev (1994). '藤永・堀 (1982); 田中 (1992); Sugiyama et al. (1992).

図1 バイカル湖.

ばバイカル湖はすでに富栄養の状態にある との指摘もある(Watanabe and Drucke, 1999)。周辺の工場や農地からの汚水の流 入に加えて、近年の急速なバイカル湖の観 光資源化がその原因となっている。

本研究はバイカル湖での栄養塩と主要・ 微量元素の分布を詳しく調査して、この湖 における化学過程の特徴を明らかにしよう としたものである。

2. バイカル湖の諸元

バイカル湖は東経104~110度、北緯51 ~56度に位置し、地勢的に北・中央・南の 3つの湖盆に分けられる(図1)。湖の最深 地点(水深1,643 m)は中央湖盆のオルホ ン島沖にある。北および南湖盆の最大水深 はそれぞれ900 m、1,410 mである。集水域 は556,000 km² で、これは日本の国土面積 の1.5倍に当たる。流入河川336本の中で 最大のものはセレンガ川であり、これに よって流入水の50%が供給されている。 一方、流出河川はアンガラ川のみである (森野浩・宮崎信之,1994)。

バイカル湖は春と秋に湖水が鉛直循環す る2回循環湖である。例年12月から4月に かけてバイカル湖の湖面は凍結する。氷の 厚さは年によっては1mを超える。5月に なると春期鉛直循環が始まり、6月には水 温は鉛直方向に4℃で均一となる。7月か ら湖は夏期成層期に入る。8月には表面水 温は10数℃に達する。9月になると秋期鉛 直循環が始まり、11月には再び水温は4℃ で均一となる。その後は、冬期成層期とな り、12月には再び湖面が凍結する。

鉛直循環と成層に加えて、バイカル湖で の湖水の流動にとって重要となるのが深層 水湧昇とサーマルバーの形成である。湖面 に強風が吹くと、湖岸への表層水の吹送が 起こる。これに伴って、反対湖岸では深層 水が表層へと湧昇する。また、湖面が凍結 するバイカル湖では、初春にはその氷が溶 けて沖域では水温2~3℃の湖水が形成さ れる。一方、暖かい河川水の混じった沿岸 域では水温5~7℃の水が存在している。 両者が混合すると最大密度4℃の水が生成 し、湖水は下方に沈降して二つの水塊の間 に境界(フロント)が形成される。この境 界面がサーマルバーと呼ばれるものであ る。

バイカル湖の主要成分と栄養塩の濃度は 表2のような値にある。琵琶湖と比較する とバイカル湖の水はCa・Mg・アルカリ度 の値が高く、Na・K・硫酸イオン・塩化物 イオンのそれが低い特徴をもつ。これは琵 琶湖に比べれば集水域に堆積岩地帯が多い ことに起因している。しかし、硬水に分類 されるほどには湖水の硬度は高くない。リ ン酸・硝酸・ケイ酸の濃度は表層で低く、 深度とともに増加する分布を示す(Weiss et al., 1991)。これは外洋海域と同様に、< 表層での生物による摂取・固化>-<表層 から深層への生物粒子の沈降>-<深層で の分解・溶出>によるものと考えられる が、先述したサーマルバーの形成による高 濃度の栄養塩を含む河川水の沈降の影響も 無視できないとされる。

3. 試料の採取と分析

3.1 湖水の採取

バイカル湖での調査は1995年8月、1998 年7月、1999年7~8月に行った(表3)。 湖水をニスキン採水器で採取したのち、孔 径 0.2 μm のヌクレポアフィルターあるい は Whatman 製GF/F フィルターを用いてろ 過した。

表 3 試料採取地点.

採水年	水域	地点番号	採水月日	北緯	東経	水深 (m)
1995 年	中央湖盆 バルグジン川 北湖盆 南湖2	95-13 95-80 95-44 95-59	8月 6日 8月 8日 8月 11日 8月 15日	52° 57′ 36″ 53° 25′ 29″ 54° 30′ 40″ 51° 57′ 59″	107° 04′ 15″ 108° 59′ 40″ 108° 39′ 57″ 105° 39′ 27″	1500 1 820 1320
1998 年	南湖 <u>盆</u> 南湖盆 中央湖盆 バルグジン湾	98-1 98-2 98-B0	7月26日 7月27日 7月28日 7月28日	51° 48′ 50″ 53° 12′ 30″ 53° 26′ 47″	103° 33° 21° 104° 41′ 59″ 107° 46′ 20″ 108° 58′ 27″ 108° 51′ 23″	1630 8
		98-B2 98-B3 98-B4	7月28日 7月29日 7月29日 7月29日	53° 27′ 34″ 53° 27′ 29″ 53° 27′ 29″	108° 48′ 51″ 108° 46′ 17″ 108° 43′ 18″ 108° 43′ 18″	50 104 200
	チヴィルキー湾	98-85 98-86 98-87 98-C1	7月29日 7月29日 7月29日 7月30日	53° 25′ 30″ 53° 25′ 43″ 53° 23′ 57″ 53° 44′ 53″	108° 39° 00° 108° 36′ 50″ 108° 20′ 58″ 109° 07′ 10″	1100 1600 10
		98-C2 98-C3 98-C4 98-C5	7月30日 7月30日 7月30日 7月30日 7月30日	53° 47′ 21″ 53° 48′ 55″ 53° 49′ 45″ 53° 52′ 19″	109° 06′ 42″ 109° 06′ 42″ 109° 06′ 01″ 109° 07′ 01″	20 50 100 500
1999 年	南湖盆 バルグジン川 バルグジン湾	98-C6 99-S1 99-0 99-1	7月30日 7月28日 8月1日 8月1日	53° 56′ 22″ 51° 41′ 11″ 53° 25′ 29″ 53° 25′ 35″	109° 09′ 02″ 104° 27′ 56″ 108° 59′ 40″ 108° 59′ 20″	760 1 1
		99-2 99-3 99-4 99-5 99-6	8月 1日 8月 1日 8月 1日 7月 31日 7月 31日	53° 26′ 26″ 53° 28′ 31″ 53° 29′ 30″ 53° 28′ 21″ 53° 24′ 36″	108° 58° 53″ 108° 57′ 39″ 108° 50′ 26″ 108° 47′ 30″ 108° 40′ 40″	1 32 100 740

3.2 試料の分析

3.2.1 溶存態濃度

孔径 0.2 μ m のヌクレポアフィルターで ろ過した湖水を試水とした。超高純度の硝 酸を加えて 0.01 mol/l 硝酸酸性にして保存 した。 Mg・Ca・Sr・Ba・Si・Fe・Mnの測 定は、Sugiyama et al. (1992)の方法によっ た。 V・Mo・A1の測定には、それぞれ Sugiyama and Hori (1992)、川久保ら (1997)、重松ら (1970)の方法を用いた。 WとPは、それぞれ誘導結合プラズマ質量 分析法、青色リンモリブデン法によって測 定した。

3. 2. 2 懸濁態濃度

湖水をろ過して、ろ紙上に捕捉された粒 子に含まれるものを懸濁態とした。C・Nの 測定に用いた試料は、Whatman 製GF/F フィルターでろ過した。試料の分析は、 CHNアナライザーで行った。

金属元素とPの測定は、0.2 µm ヌクレ ポアフィルターでろ過した試料を用いて、 既報の方法(杉山,1996)に従った。

Siの分析にも0.2 µm ヌクレポアフィル ターでろ過した試料を用いた。ろ紙ととも に懸濁物質を白金るつぼにとり、1,2-ジク ロロエタンを0.5 ml 加えてろ紙を溶かし た。90℃で1時間加熱してるつぼの内容物

海洋化学研究 第14卷第2号 平成13年12月

を乾燥させた後、灼熱してろ紙を灰化した。残査に10%炭酸ナトリウム溶液を4 ml加えた後、加熱乾燥した。残査を灼熱・ 熔融して試料を分解した。残査に塩酸を加 えて溶かした後、誘導結合プラズマ発光分 析法によって Si を定量した。

3.2.3 クロロフィル-aならびにフェ オ色素の濃度

Whatman 製GF/Fフィルターにより湖水 をろ過して、植物色素定量用の試料を得 た。Suzuki and Ishimaru(1990)の方法に 従ってクロロフィル-a (Chl-a) とフェオ色 素(Pheo)を測定した。

4. 分析結果と考察

4.1 河口-沿岸域での化学成分の分布

1998年と1999年にはバルグジン川河口 からバルグジン湾沖域にかけて化学成分の 分布を調査した。特に、1999年にはバルグ ジン川下流での試料も採取したので、ここ ではその結果を中心に議論する。すべての 分析結果を附表I~VIに示した。

4. 1. 1 Al・Ti・Fe・Mnの分布

Fe・Mnの溶存態濃度はバルグジン川下 流(St. 99-0)からその河口域(St. 99-1~ 99-5)、バルグジン湾沖域(St. 99-6)に向 かって急減した。河川から高濃度のFe・Mn が供給されているが、河口域でこれらは速 やかに沈殿生成して除去されることが分か る。Al・Tiの濃度は誘導結合プラズマ発光 分析法での直接測定では、その濃度を正確 に求めることはできなかった。しかし、ル モガリオン蛍光法で測定した1998年のSt. 98-B0からSt. 98-B7の結果は、AlもFe・Mn と同様に沖域よりも河口域で濃度が高い傾 向にあった。しかし。この元素はFe・Mn とは異なり、自然水中で酸化・還元を受け て元素が沈殿と溶解を繰り返すようなこと はない。また、表層水のpHは沿岸から沖 域にかけてほぼ同じ値をとっているので、 沈殿生成による濃度減少よりは湖水による 河川水の希釈が影響して濃度低下が起こっ ているものと推測される。

懸濁態の濃度はSt. 99-0からSt. 99-2で値 が格段に高かった。バルグジン川から高濃 度の濁流が湖に流入していたためである。

湖水や河川水中の懸濁物質はその生成の 起源から、主に3つの成分に分けることが できる(杉山, 1996)。すなわち

(i)アルミノケイ酸塩を主成分とするもの であって、集水域の土壌や湖底の堆積物に 由来する地殻起源の粒子

(ii) MnやFeの水和酸化物あるいは炭酸 カルシウムなどに代表されるような、水域 の内部で生成した自生鉱物

(iii)プランクトンやその遺骸・糞粒を主 成分とする生物起源の粒子

である。このうち地殻起源粒子は主として 対象とする水域の外(集水域)に供給源を 持つ外部起源の粒子である。Alはこの地殻 起源粒子 (外部起源粒子) の主要成分であ る。またpHが中性の水域では、この元素 は地球化学的にも生物化学的にも不活性で あるとされ、溶解・析出といった反応に殆 ど与からない。このため、 地殻起源粒子の 指標としてよく利用される (Brewer et al., 1980; Sugiyama and Hori, 1994)。A1に比べ れば外部起源粒子に含まれる量は少ない が、Ti もしばしば同様の目的に用いられ る。そこで懸濁物質の起源と構成を調べる ために、懸濁態の各種元素濃度とAI濃度と の相関を求め、その結果を図2(Fe・Mnの 結果のみ) に示した。Fe・Tiの濃度はAl濃

図2 バルグジン湾での懸濁体元素濃度と懸濁態 AI 濃度の相関(1999年). 図中の直線は最小二乗法により求めた一次回帰直線である.

度と良い直線相関にあって、その回帰直線 の縦軸切片もほぼ原点の近くにあった。ま た、上述したようにSt. 99-2からSt. 99-3に かけてこれらの元素濃度は急減し、St. 99-4 ~ St. 99-6ではSt. 99-0のそれの1/200 ~ 1/500に過ぎなかった。したがって、これ らの元素は地殻起源粒子の形をとった懸濁 態として河川から湖に向けて大量に運び込 まれるが、それらの粒子は河口域や沿岸の ごく近傍で沈積してしまい、沖域への影響 は小さいと考えられる。

MnもAlと良い直線関係にあるが、Feや Tiに比べ、縦軸切片は少し原点をはずれて いた。このことはMnはAl・Fe・Tiに比べ て沖域での濃度減少の割合が小さいことに 由来している(附表 VI)。すなわち沖域で のこの元素の分布には、湖の内部で生成した自生の水和Mn酸化物の影響が現れているものと考えられる。

4. 1. 2 Chl-a・Pheo・C・N・P・Siの分布

生物活動に関連して分布の形態が変わる Chl-a・Pheo・C・N・P・Siの分布も懸濁態 に関するものについては上述のAlのそれ とよく似た傾向を示した。すなわち、St. 99-2からSt. 99-3にかけて濃度が急減し た。Al濃度との相関はいずれも直線関係に あったが(その中のC・N・Pの結果を図2 に示した)、Siを除きFeやTiに比べて大き な縦軸切片を有していた。しかし、この大 きな切片は、河川からの流入粒子によるも のではなく、沖域での生物活動により自生 海洋化学研究 第14巻第2号 平成13年12月 したものと考えられる。したがって、C・N などの元素についても、河川から懸濁態と しての大量の供給があるが、その影響は沿 岸域のみに限られるとしてよい。一方、沖 域での懸濁粒子には湖の中で生産された成 分の寄与が大きいと考えられる。

溶存態の分布はP・Siともに河川・河口 域で高く沖域で減少する傾向にあった。こ れらの分布については次項でアルカリ土類 元素の分布と併せて詳しく議論する。

4. 1. 3 Mg·Ca·Sr·Baの分布

懸濁態の分布はこれまでに述べてきた全 ての成分で見られたのと同じ傾向にあっ た。すなわち St. 99-0 ~ St. 99-2の河川・ 河口域で濃度が高く、St. 99-3 になると急 減し、St. 99-4 ~ St. 99-6の沖域の濃度は St. 99-0の数百分の1であった。A1との相関 もすべての元素について原点を通る良い直 線関係にあった(Caの結果のみ図2に示し た)。したがって、これらの懸濁態の分布 は基本的に地殻起源粒子の動きによって支 配されていると言える。

懸濁態の分布がどの成分についてもほぼ 同じ傾向を示したのに対し、溶存態のそれ には生物活動に関連するP・Siを含めて元 素による違いが現れた。Si・Ca・BaではSt. 99-0を除きSt. 99-1からSt. 99-6に向かう河 口から沖域にかけての方向で濃度が減少し た。これとは逆にMgでは同方向にそって 濃度が増加した。一方、Srの濃度はどの地 点でもほぼ一定であった。Pは沖域に比べ 河川や河口域で高い傾向にあったが、Siな どの分布とは一致しなかった。各種元素の 溶存濃度と溶存態Ca濃度との相関を調べ てみると、Si・Mg・BaはCaと良い直線関 係にあった。すなわち河口から沖域にかけ てこれらの元素の濃度は、河川水と沖域湖 水の単純な混合によって決定されているこ とが分かる。一方、P・Srにはこのような 傾向はなかった。Srは他の元素に比べて河 口から沖域にかけてほとんど濃度が変化し ないためである。一方、Pは生物活動の影 響を受けて溶存濃度が変化しているためと 考えられる。

4.2 地殻起源粒子中の元素濃度比

第3.1.1節で述べたように、懸濁態AI濃 度はアルミノケイ酸塩を主成分とする地殻 起源粒子ひいては外部起源粒子の濃度の指 標になる。したがって、外部起源粒子中の 平均的な元素/AI濃度比と懸濁態AI濃度が 分かるなら、それぞれの元素の全懸濁態濃 度に対する外部起源粒子の寄与を見積もる ことができる(Brewer et al., 1980; Sugiyama and Hori, 1994)。ここではSt. 99-0 ~ St. 99-2での懸濁態元素のほとんどすべてが地殻 起源粒子によると仮定して、それらの濃度 からバルグジン川を経て湖に流入する粒子 中の元素/AI比を求めた。その結果を表4に 示した。

地殻起源粒子中の元素/Al濃度比のもう 一つの求め方は、湖水中の懸濁態濃度の分 析値をもとにして、着目する元素の濃度と Al濃度との直線相関を用いる方法である (Sugiyama and Hori, 1994)。図3にはその 代表例として1995年調査の中央湖盆での Mg・Feについての結果を示した。図の縦 軸にはMg・Feの懸濁態濃度を、横軸には Alのそれを目盛っている。同図には、得ら れた全分析値を、pHが一定で(附表I)生 物生産による水質への影響が少ないと考え られる250 m以深の深層とそれ以浅の2つ に分けて表示した。図から明らかなよう に、Fe・Mgともに深層中の懸濁態濃度は Al濃度と良い直線関係を示した。したがっ

図 3 中央湖盆(St. 95-13)での懸濁態元 素濃度と懸濁態AI濃 度の相関(1995年). ○:水深250m以浅 ●:水深250m以深. 図中の直線は最小二 乗法により求めた一 次回帰直線である.

表4	懸濁物質中の元素/	AI比	(mol/mol)	
----	-----------	-----	-----------	--

元素	バルグジン川	南湖盆	中央湖盆	北湖盆	地殻	
Ba	2.52	5.95	4.20	2.45	1.02	(x 10 ⁻³)
С	17.0	-	-	-	0.05	(x 10 ⁻¹)
Ca	2.27	3.02	2.02	1.76	3.39	(x 10 ⁻¹)
Cu	3.23	-	4.85	-	2.84	(x 10 ⁻⁴)
Cr	5.72	-	-	-	6.31	(x 10 ⁻⁴)
Fe	3.58	3.42	3.61	2.00	3.31	(x 10 ⁻¹)
Mg	2.62	1.52	1.49	1.33	3.14	(x 10 ⁻¹)
Mn	1.07	3.44	3.47	-	0.57	(x 10 ⁻²)
Ν	15.7	-	-	-	0.05	(x 10 ⁻²)
Ni	1.61	-	-	-	4.19	(x 10 ⁻⁴)
Р	2.26	21.0	17.9	-	1.11	(x 10 ⁻²)
Pb	3.63	-	-	-	0.20	(x 10 ⁻⁴)
Si	3.48	-	-	-	3.29	(x1)
Sr	2.04	2.59	1.91	1.23	1.41	(x 10 ⁻³)
Ti	3.11	2.21	3.83	2.33	3.91	(x 10 ⁻²)
V	8.54	-	-	-	8.69	(x 10 ⁻⁴)
Zn	8.47	174	-	-	3.51	(x 10 ⁻⁴)

地殻中での元素/Al 比は Taylor(1964)による平均元素存在度から 算出した。 て、同層では地殻起源粒子が懸濁物質の主 要成分を占めていると考えられるので、こ の回帰直線の傾きを地殻起源粒子中の元 素/A1濃度比とすることができる。こうし て1995年調査の結果をもとに南・中央・北 の各湖盆で得た濃度比を、Taylor(1964)に よって求められた地殻中の平均元素存在度 から計算した濃度比とともに表4に示し た。

C・N・P・Pb・Znを除いては表に掲げた 5つの値は互いによく一致していて、これ らの値をバイカル湖に流入する地殻起源粒 子の元素/Al濃度比として用いることが妥 当であることが分かる。C・Nについては、 バルグジン川で得られた値は、地殻中での 値より遥かに高い。これは集水域からのす なわち外部起源の有機物粒子による影響と 考えられる。また、南・中央湖盆でのP、バ ルグジン川でのPbならびに南湖盆でのZn の値が、その他の値に比べ高くなっている のが分かる。これは地殻起源以外の粒子の 影響あるいは分析誤差によるものと判断さ れる。

4.3 沖域での鉛直分布

図4と図5にそれぞれ1999年調査におけ るバルグジン湾(St. 99-6)と南湖盆(St. 99-S1)の沖域での主な化学成分の鉛直分 布を示した。懸濁態の分布については全懸 濁態濃度に加えて湖の内部で自生したと考 えられる画分(自生懸濁画分:先の区分で 自生鉱物と生物起源粒子がこれにあたる) の濃度も併せて示した。この自生画分懸濁 態濃度は次のようにして求めた。

表4に示した地殻起源粒子の元素/AI濃 度比と懸濁態AI濃度から、地殻起源画分の 懸濁態濃度を算出した。全懸濁態濃度から この地殻起源画分濃度を差し引いて得た値 を自生画分懸濁態濃度とした。St. 99-6 で の濃度の算出にはバルグジン川で得られた 元素/AI 濃度比を用いた。St. 99-S1 での濃 度の算出には、C・N・Si・P についてはバ ルグジン川での元素/AI 濃度比を、それ以 外の元素については南湖盆でのそれを用い た。後に述べる 1995 年・1998 年のP 濃度 の算出についても同様にした。

4.3.1 Al・Ti・Fe・Mnの分布

地殻起源粒子の動きを直接に反映する懸 濁態A1の分布はバルグジン湾St. 99-6およ び南湖盆St.99-S1のどちらでも、表層で高 く、中層で減少し、深層に向けて再び高く なる傾向を示した。この分布はバイカル湖 に比べて水深が浅い琵琶湖においてもよく 見られるものであり、温度成層によって河 川からの懸濁物の負荷が主に表水層に限ら れることと、底層水の攪乱がもたらす湖底 堆積物の再懸濁による湖底高濁度層の出現 によっている(杉山, 1996)。Tiの分布も、 この元素の持つ地球化学的・生物化学的に 不活性な性質を反映して、AIとよく似た傾 向を示した。当然ながらこの元素では自生 懸濁画分の濃度は目立った特徴を示さな かった。2つの地点でのAl・Tiの濃度を比 較すると、やはり、より沖域に位置してい る St. 99-S1 での濃度の方が Al・Ti ともに 低い値を与えていた。これらの元素の分布 が地殻起源粒子の影響を大きく受けている ことがよく理解できる。

Fe の分布には Ti のそれとは異なり、自 生懸濁画分に 2 地点間で共通の特徴的な傾 向が見られた。すなわちこの元素の濃度は St. 99-6 では水深 5 m に、St. 99-S1 では水 深 25 m に極大を持ち、表水層で高く深水 層で低い分布にあった。これらの分布は後 述する Chl-a や自生懸濁画分 C のそれとよ く似ていた。この原因が生物によるFeの取 り込みによるものか、あるいはFeの水和酸 化物の生成が生物粒子表面で起こることに よるものかは、今回の結果からだけでは判 断できないが、Feの動態を考える上でこの 結果は極めて興味深い。

自生懸濁画分のMnは湖のごく表面で高 く、どちらの地点でも15m以深ではほぼ 一定の値を示した。また、Feとは異なりど の水深でも全懸濁Mnの大部分が自生画分 で占められていることが分かる。湖の中で Mnの酸化・析出が活発に起こっているこ とが示唆される。

4.3.2 Chl-a・Pheo・C・N・P・Siの 分布

バルグジン湾、南湖盆のどちらにおいて も、Chl-aと自生懸濁画分のC・N・Pは水

図 4 - 1 バルグジン湾 St. 99-6 での化学成分の鉛直分布(1999 年). 色素の分布の●はChl-a 濃度を、○はChl-a+Pheo 濃度を、また、懸濁態分布の ●は自生画分濃度を、○は全濃度を示している.

図 4 - 2 バルグジン湾 St. 99-6 での化学成分の鉛直分布(1999 年). 色素の分布の●は Chl-a 濃度を、○は Chl-a+Pheo 濃度を、また、懸濁態の分布 の●は自生画分濃度を、○は全濃度を示している.

深10~15mに極大値を持ち、それ以深で は急減するという極めてよく似た分布を示 した。このことは、これらの成分の挙動が 生物活動の影響を強く受けていることを示 唆している。溶存態Pは表層では涸渇して いたが、深度とともにその濃度が増加し た。この結果は自生懸濁画分Pの深層での 濃度増加と見事に呼応していた。Pの分布 が外洋海域と同じく<表層での生物による 摂取・固化>-<表層から深層への生物粒 子の沈降>-<深層での分解・溶出>とい う生物地球化学的過程によって支配されて いることが如実に示されている(Bruland, 1980; Weiss et al., 1991)。

Redfield ら(1963)によれば、栄養塩の 分布から求めた外洋海域での植物プランク

図 5 - 1 南湖盆 St. 99-S1 での化学成分の鉛直分布(1999 年). 色素の分布の●は Chl-a 濃度を、○は Chl-a+Pheo 濃度を、また、懸濁態の分布 の●は自生画分濃度を、○は全濃度を示している.

懸濁態の分布の●は自生画分濃度を、○は全濃度を示している.

採水地点	水深 (m)	C/P	N/P	C/N
バルグジン湾 St. 99-6	$\begin{array}{ccc} & 0 \\ & 5 \\ & 10 \\ & 15 \\ & 20 \\ & 40 \\ & 80 \\ & 150 \\ & 250 \\ & 400 \\ & 550 \end{array}$	$ 138 \\ 138 \\ 130 \\ 106 \\ 74 \\ 108 \\ 95 \\ 96 \\ 78 \\ 58 \\ 68 \\ $	$18.8 \\ 19.4 \\ 18.3 \\ 15.7 \\ 10.5 \\ 12.6 \\ 10.8 \\ 13.3 \\ 10.2 \\ 1.0 \\ 6.7$	$7.4 \\ 7.1 \\ 7.1 \\ 6.8 \\ 7.1 \\ 8.5 \\ 8.7 \\ 7.2 \\ 7.7 \\ 59.9 \\ 10.3$
南湖盆 St. 99-S1	0 1 25 50 100 200	250 221 205 117 138 240 171	31.629.025.919.716.120.412.0	7.97.67.9 $6.08.511.714.2$
Redfield 比		106	16.0	6.6

表5 自生懸濁画分中の C/P, N/P, C/N 比 (mol/mol).

トン中のC:N:P平均組成比はC:N:P = 106: 16:1とされる。表5には自生懸濁画分の濃 度から求めた各水深でのC/P・N/P・C/Nそ れぞれの値を示した。バルグジン湾15 m 層や南湖盆25 m 層では Redfield 比にとて も近い値が得られた。これらの結果は、前 述した方法によって自生懸濁画分濃度を求 めることが妥当であること、またC・N・P の自生懸濁画分は主に生物起源の粒子に よって構成されていること、を示している。

地点や水深の違いによる元素組成比の比 較からは、C/P・N/Pのどちらもが、バルグ ジン湾より南湖盆で、中層域より表層で高 い値を示していた。これは溶存P濃度の涸 渇と対応していて、これらの水域になるほ ど生物生産がPによってより厳しく制限されていることが分かる。

図6と図7にはそれぞれ1995年調査と 1998年調査で得られた沖域でのPの鉛直 分布の様子を示した。St.98-2の結果を除 いてどの水域でも、上述した1999年調査 での結果と同様の分布にあった。定常的に 夏期成層期のバイカル湖ではこのような分 布が形成されていることがわかる。こうし たPの分布が春季ならびに秋期の循環期お よび冬期成層期にどのように変化するのか は、地球化学的にもまた化学成分の分布か ら見た湖水の物理構造の観点からも極めて 興味深い。今後の検討課題の一つである。 一方、1998年調査でのSt.98-2の分布は、

海洋化学研究 第14卷第2号 平成13年12月

Transactions of The Research Institute of Oceanochemistry Vol.14, No.2, Dec., 2001

(91)

これまでに述べたものとはかなり異なって いて、表層でのPの涸渇が起こっていな い。同様の分布はSt.98-1やSt.98-B7でも 見ることができる。これらの地点に共通し ているのはPの涸渇が起こっている他の地 点に比べて表層の水温やpHが低いことで ある。これは1998年の調査時には湖岸を 西から東に渡る表面吹送風が強く、表層水 が東岸に吹き寄せられ、その補償として西 岸でP濃度が高く水温とpHが低い深層水 の湧昇が起こったことによると考えられ る。こうしてもたらされた深層水が湖での 生物生産にどのような影響を与えているの かも興味の持たれる問題である。

Siの分布はC・N・Pのそれとは少し異 なっていた。溶存態SiはPのそれと同様に 深度とともに増加したが、表層では涸渇し ておらず、また濃度増加の傾向もPに比べ て緩やかであった。特にバルグジン湾では 0~150 mまではほぼ均一な値を示した。 自生懸濁画分の分布もPが10~15m層で 極大を示したのに対し、Siはそれよりさら に深い40~80m (St. 99-6) で濃度が増加 した。これはC・N・Pが主に有機物からな る生物の軟組織に含まれるのに対し、Siは ケイ藻の殻などの硬組織に含まれることに 起因している。このため Si は C・N・P よ りも生物起源粒子から分解・溶出しにく く、水深方向での溶存態の濃度増加は緩や かになり、懸濁熊の存在は深い水域にまで 及ぶことになる。

4.3.3 Mg・Ca・Sr・Baの分布

どの元素についても自生懸濁画分の分布 は、表層で高く50m以深では急激に減少す るというC・N・Pのそれとよく似た傾向を 示した。これらの元素にもやはり生物起源 粒子の影響が大きいことがわかる。しか し、アルカリ土類元素はMn酸化物に吸着 しやすいことが報告され、特にBaはその 影響を受けることが知られている (Sugiyama et al., 1992)。したがって、バル グジン湾では水和酸化物に由来すると考え られる自生懸濁画分のMnが表層で高い濃 度にあるので、この影響も考慮されなくて はならない。P・Siも含め詳細な動態を明 らかにするには、今後、自生懸濁画分を生 物起源と鉱物起源とに分けるといった工夫 が必要とされる。

PやSiと同様に懸濁態濃度の分布には生 物活動の影響が顕著であるのに対し、アル カリ土類元素の溶存態濃度には図4、図5 を見る限りPやSiのような傾向は現れてい ない。これはアルカリ土類元素の懸濁態と 溶存態の濃度比、言いかえれば生物要求量 と溶存量との比がPやSiに比べて格段に小 さいことによっている。溶存している量は 多いが、生物に取り込まれる量は少ないの で、溶存態濃度にはあまり変化が現れない のである。しかし、図8のように濃度目盛 を変えて変化の領域を拡大してみると、わ ずかではあるが表層から深層に向けての濃 度増加が起こっていることが分かる。この 傾向はSt. 99-6よりもさらに湖岸から遠い 位置にあって、河川や沿岸域の影響を受け にくく水塊の鉛直安定性も強い St. 99-S1 で、より顕著に現れていた。このような分 布は外洋海域では報告されているものの (Sugiyama et al., 1984)、湖沼での例は知ら れておらず、陸水域でのアルカリ土類元素 の動態を海洋域との比較に立って考える上 で注目される事例である。

4.3.4 Mo·V·Wの分布

1998年調査での St. 98-B7 における溶存 態 Mo・V・W の 鉛直分布を図9 に示した。

図8 沖域でのアルカリ土類元素の鉛直分布(1999年).

いずれの元素も表層から深層まで均一であ ることが分かる。琵琶湖などの中栄養湖や 富栄養湖におけるこれらの元素の鉛直分布 は特徴的であることが知られている (Sugiyama, 1989; Harita et al., 2001)。生物 生産の増大に伴う表層湖水のpH上昇が沿 岸堆積物や水中懸濁物からのVとWの脱 離や溶解を引き起こすのである。このた め、夏期成層期でのV・Wの濃度は表層で 高く、温度躍層で急減して、深層では低く て均一であるという分布を示す。一方、Mo ではこのような反応は起こらず、表層から 深層までほぼ一定の濃度にある。

図9に示すようにバイカル湖では琵琶湖 でのような分布が見られない。これはこの 湖が貧栄養湖に属すことによっている。す なわち、生物生産が琵琶湖ほどには活発で なく表層湖水のpHはそれほど上昇しない ためである。また、バイカル湖のように急 峻な湖岸斜面を持つ巨大な湖では、沖域で の懸濁粒子量が少なく、表層水量に対する 浅層湖底面積(沿岸堆積物量)の割合が小

図 9 沖域(中央湖盆 St. 98-2) での Mo・V・W 鉛直分布(1998 年).

さいことも影響していると考えられる。

5. おわりに

バルグジン川からバルグジン湾沖域にか けての各種化学成分の分布は、特に懸濁態 成分が河川から湖に大量に供給されている ことを示していた。しかしこの影響は沿岸 のごく近傍に限られていて、沖域へのそれ は小さかった。今後は、この懸濁態成分が 沿岸域で沈積した後に、湖の中でどのよう な役割を果たしているのかについての検討 が必要とされる。

河川からの溶存態成分の供給の程度は、 河川水と湖水との濃度関係が影響して元素 によってさまざまに異なっていた。PやSi などの生物に利用されやすい元素は、湖水 中の濃度に比べ河川水中の濃度が格段に高 く、河川からの供給が重要であることを示 していた。これらの負荷量の詳しい把握が 望まれる。

沖域での各種成分の分布を見ると、バイ カル湖が琵琶湖などの湖沼に比べてはるか に巨大であることが幸いして、この湖では

元素の分布、特に懸濁熊濃度の分布に対し て、湖内部で起こる地球化学的・生物化学 的過程の影響が顕著に現れることが分か る。これは、バイカル湖が水平・鉛直の両 方向ともに長大であるために、沖域では地 殻起源粒子(外部起源粒子)の影響がとて も小さくなること、水塊の鉛直安定性が優 れているために地球化学的・生物化学的過 程の影響の時間的蓄積が大きいことによっ ている。このために、他の湖沼では見るこ とが難しかったアルカリ土類元素の分布に 対する生物活動の影響までもがはっきりと 現れていたのである。このことは、バイカ ル湖が湖沼での物質循環の機構を体系的に 捉える場として非常に有用であるばかりで なく、海洋域を含めた比較水圏科学の研究 水域としても極めて重要であることを示し ている。

新辞

この研究を遂行するにあたり、バイカル 湖での調査について、ご指導とご協力をい ^{海洋化学研究} 第14巻第2号 平成13年12月 ただいたロシア科学アカデミー陸水学研究 所のバレンチン・V・ドュリュケル副所長、 オレグ・A・チモーシュキン室長、東京都 立大学大学院理学研究科渡辺泰徳教授、総 合地球環境学研究所和田英太郎教授ほかす べての方々に深く感謝いたします。

参考文献

- Brewer, P. G., Y. Nozaki, D. W. Spencerand A. P. Fleer (1980): Sediment trap experiments in the deep North Atlantic: isotopic and elemental fluxes. *J. Mar. Res.*, **38**: 703-728.
- Bruland, K. W. (1980): Oceanographic distribution of cadmium, zinc, nickel, and copper in the north Pacific. *Earth Planet. Sci. Lett.*, **47**: 176-198.
- Harita, Y., N. Kimura, T. Hori and M. Sugiyama (2001): Geochemical cycle of trace oxyanions regulated by the solid-water interaction. *Proc. 9th Intern. Conf. Conserv. Manag. Lakes*, in press
- 川久保進, 萩原清志, 岩附正明 (1997): 接触 反応を利用する天然水及び水道水中の 極微量モリブデンの吸光光度定量, 分析 化学, **46**: 381-385.
- Falkner, K. K., C. I. Measures, S. E. Herbelin, J. M. Edmond and R. F, Weiss (1991): The major and minor element geochemistry of Lake Baikal. *Limnol. Oceanogr.*, **36**, 413-423.
- 藤永太一郎, 堀智孝 (1982): 琵琶湖の環境 化学. p.230. 日本学術振興会.
- Gurulev, S. A. (1994): The face of Baikal 2. Water, p. 24, Name, Irkutsk.
- 森野浩,宮崎信之編(1994):バイカル湖. p. 267.東京大学出版会.

- Redfield, A. C., B. H. Ketchum and F. A. Richards (1963): The influence of organisms on the composition of sea water. *The Sea*, Vol. 2: 26-77, Interscience, New York.
- 重松恒信,西川泰治,平木敬三,長野憲子 (1970):天然水中の微量アルミニウムの 分析 -オルトフェナントロリンによる 鉄マスキング-ルモガリオンけい光法-. 分析化学,19:551-554.
- Sugiyama, M. (1989): Seasonal variation of vanadium concentration in Lake Biwa, Japan. *Geochem. J.*, **23**: 111-116.
- 杉山雅人 (1996):水中懸濁物質の多元素同 時定量.分析化学,45:667-675.
- Sugiyama, M., M. Matsui and E. Nakayama (1984): Direct determination of barium in sea water by inductively coupled plasma emission spectrometry. *J. Oceanogr. Soc. Japan*, **40**: 295-302.
- Sugiyama, M., T. Hori, S. Kihara and M. Matsui (1992): A geochemical study on the specific distribution of barium in Lake Biwa, Japan. *Geochim. Cosmochim. Acta*, 56: 597-605.
- Sugiyama, M. and T. Hori (1992): Air-segmented continuous-flow analysis for vanadium based on a catalytic reaction with Bindschedler's green leuco base. *Anal. Chim. Acta*, **261**: 189-196.
- Sugiyama, M. and T. Hori (1994): Geochemical behavior of barium in the vicinity of a MnO₂/Mn²⁺ redox front in a eutrophic lake. *Japanese J. Limnol.*, **55**: 27-37.
- Suzuki, R. and T. Ishimaru (1990): An improved method for the determination of phytoplankton chlorophyll using N,N-dimethylformamide. *J. Oceanogr Soc. Japan*, **46**: 190-194.

- 田中正明 (1992): 日本湖沼誌, p. 530, 名古 屋大学出版会.
- Taylor, S. R. (1964): Abundance of Chemical elements in continental crust: A new table. *Geochim. Cosmochim. Acta*, 28: 1273-1286.
- Watanabe, Y. and V. V. Drucker (1999): Phytoplankton blooms in Lake Baikal, with ref-

erence to the lake's present state of eutrophication. Ancient lakes: Their cultural and biological diversity (H. Kawanabe, G. W. Coulter, and A. C. Roosevelt, eds.), pp. 217-225. Kenobi Prod.

Weiss, R. F., E. C. Carmack and V. M. Koropalov (1991): Deep-water renewal and biological production in Lake Baikal. *Nature* **349**, 665-669.

[英文要旨]

Chemical Processes in Lake Baikal

M. Sugiyama, N. Kimura and Y. Harita Faculty of Integrated Human Studies, Kyoto University, Yoshida-Nihonmatsu-cho, Sakyo-ku, Kyoto 606-8501, Japan

Distribution of nutrients and major and trace elements in Lake Baikal was measured in 1995, 1998 and 1999. The results showed that a large quantity of chemical matter, especially as suspended particles, was loaded into this lake through Barguzin River. However, this effect was limited to the littoral area. In the offshore area, biological activity greatly affected the distributions of nutrients and some elements. Vertical distribution profiles of the dissolved state of these elements increased with depth and showed a similar pattern as observed in the pelagic ocean. Those of particulate state showed a peak at the same depth that chlorophyll-a concentration became maximal. The C:N:P ratio in the autogeneous fraction of particulate matter in the epilimnion was quite close to the Redfield ratio. However, C:P and N:P ratios at the surface of the pelagic area were higher than those of the Redfield ratio. These results suggested that the biological production in this lake was under the phosphate limitation.

APPENDICES

(To be continued)

附表I バイカル湖での各種化学成分の

溶存態濃度 (1995年).

附表 II バイカル湖での各種化学成分の 懸濁態濃度 (1995年).

					_											
f The ry Vol	地点	透明度 a	水深 ■	水温℃	рH	Ba nmol/l	Ca. µmol/1	Mg lµ∎ol/lµ	Na mol/l	P nmol/l	Si µmol/l	Sr µmol/l	¥ pmol/l	地。	Ħ	水深
Research Institute of l.14, No.2, Dec., 2001	95-13	5.5	0 5 10 42 94 191 287 365 456 567 756 939	16.2 15.9 4.0 3.8 3.7 3.5 3.4 3.3	7.8 7.6 7.4 7.4 7.2 7.2 7.2 7.2 7.2 7.2 7.2	76.9 77.5 76.9 78.2 77.6 77.2 77.4 76.9 77.0 76.8 75.6 75.3	392 389 392 392 389 392 389 389 389 392 389 392	128 126 128 128 128 128 128 127 127 127 127 127 127 128 129 128	149 148 148 152 148 150 148 145 145 145 145 145 145	15 25 138 322 345 344 375 387 260 423 456 468	28.8 28.6 31.1 31.4 31.1 31.7 32.6 33.7 34.6 36.8 41.1 45.5	1.27 1.28 1.29 1.29 1.29 1.28 1.29 1.28 1.29 1.29 1.29 1.29 1.29		95-	13	0 5 10 42 94 191 287 365 456 567 756 939 1127 1212
(97)	95-14	4.5	1127 1212 0 5 10 45 90 190 285 385 481 537 637 720	13.9 14.0 5.0 3.8 3.5 3.5 3.4	7.2 7.2 7.7 7.7 7.7 7.4 7.4 7.4 7.3 7.3 7.3 7.3 7.3 7.3	73.8 73.1 75.6 75.4 76.5 77.1 76.6 76.5 75.9 76.7 76.2 76.3 75.7	392 392 357 352 379 387 392 389 389 384 382 384 382 384	127 127 114 122 127 128 126 126 126 126 124 125 126 126	147 145 135 137 146 150 146 150 150 151 152 150 150	529 550 nd 216 343 351 346 393 387 417 411	53.8 57.5 36.7 36.3 33.8 33.1 33.3 33.3 33.5 34.3 35.1 36.5 40.0 40.8	1.28 1.28 1.17 1.16 1.24 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27	107 76 53 139 54 50 52 47 51 52 53 47	95- 95-	44 59	0 5 10 45 90 190 285 385 481 537 637 720 0 5 10
	95-59	4.0	0 5 10 33 66 171 273 349 436 546 546 728 857 943 1048 1138	10.4 10.3 8.3 4.0 3.7 3.6 3.6 3.4 3.4 3.4 3.4	7.7 7.6 7.4 7.4 7.3	76.4 77.4 76.8 77.9 78.2 78.4 78.2 78.1 77.0 76.9 77.2 76.4 76.4	392 394 389 392 397 399 399 399 399 401 399 397 394 397	127 127 126 128 128 129 128 129 128 129 130 129 129 129 129 128 128	145 147 148 143 148 145 150 149 150 145 144 147 150 147 145	5 6 3 312 313 330 332 363 372 384 417 427 435 453 464	24.8 24.7 25.0 25.3 25.4 26.8 27.7 29.6 31.0 34.0 38.3 40.1 42.5 45.4 48.1	1.26 1.28 1.28 1.26 1.30 1.31 1.31 1.31 1.31 1.31 1.30 1.31 1.31		95- nd:	B0 検出	33 66 171 273 349 436 546 728 857 943 1048 1136 0
	82-R0		0			89.5	424	128	151	15	41.3	1.38				

Mg Mn Ni Al Ba Ca Cu Fe P Sr Ti Zn namol/l pamol/l namol/l namol/l namol/l namol/l namol/l namol/l namol/l pmol/l nmol/l nmol/l 300 359 230 347 563 159 171 160 111 0.4 1.3 0.6 25.7 28.9 26.4 18.9 62.4 68.6 55.1 14.8 4.82 6.06 2.73 58.0 0.6 0.7 0.8 200 203 197 487 717 340 120 167 138 158 162 165 165 165 143 105 92 106 1.71 6.10 1.78 3.02 2.67 2.18 2.17 2.10 3.85 1.80 1.52 1.23 1.04 0.9 2.5 3.6 0.8 2.5 0.8 1.2 0.5 1.1 1.1 1.4 0.6 1.6 0.5 75.9 53.7 2.19 2.48 3.31 3.16 0.3 0.2 0.2 0.3 29.0 20.9 17.4 51.0 29.4 0.2 66.2 45.6 42.1 0.2 18.4 14.5 29.4 22.9 26.7 34.0 27.7 31.5 21.5 20.6 18.0 16.1 55.4 276 227 223 306 197 66.8 40.0 0.2 15.0 14.2 11.6 11.0 8.5 8.3 4.0 6.9 5.3 0.2 0.2 0.2 0.2 2.66 2.67 2.34 1.79 1.53 1.54 1.58 14.7 15.6 0.7 40.3 41.1 33.3 34.6 34.6 28.9 69.8 66.7 58.1 37.6 14.5 11.3 11.0 10.0 9.1 0.5 0.4 0.3 0.7 0.4 127 113 112 nd 0.1 0.1 35.5 1160 1190 737 114 108 98.0 35.2 17.4 16.6 240 219 228 216 269 261 97.7 37.0 44.2 52.2 31.7 0.3 23.3 22.9 9.15 3.50 2.88 3.31 2.91 3.30 2.97 1.0 229 802 771 595 197 128 135 84 153 115 169 160 127 7.54 6.95 4.18 1.30 1.57 1.83 0.97 2.73 1.75 2.37 2.18 2.67 2.0 1.2 1.4 0.8 0.2 nd 230 299 112 25.8 26.8 16.7 12.8 9.5 12.3 5.8 7.7 4.5 224 76.1 44.3 37.4 0.6 nd nd nd nd nd nd nd nd 85.6 24.4 29.1 31.9 24.6 30.8 26.4 26.3 37.6 37.0 416 344 1.3 0.9 0.6 0.8 1.2 1.3 0.6 2.0 0.8 255 150 262 0.3 nd 0.1 0.3 34.5 41.7 12.2 51.5 35.2 73.8 75.9 73.9 366 462 40.1 11.8 40.6 13.5 19.0 2.93 2.47 2.51 0.4 251 289 45.9 46.8 20.0 78.7 74.6 71.2 36.0 27.2 18.0 239 232 242 37.0 22.6 15.8 216 210 180 0.2 24.0 4.99 45.7 62.6 31.8 164 128 78.9 91.3 76.0 70.8 66.4 52.0 45.3 56.8 57.9 78.9 340 250 446 445 294 320 480 193 1.1 501 566 392 237 166 144 214 141 111 106 98 65 88 74 3.06 1.28 1.55 5.15 4.31 2.67 2.47 2.25 2.03 2.44 1.85 1.55 1.76 3.04 2.68 1.3 1.6 2.8 0.9 2.1 1.0 1.3 1.0 1.4 1.2 0.6 0.4 0.7 14.9 14.1 57.7 47.4 0.2 0.8 0.6 0.1 0.5 nd 4.45 4.30 5.28 4.66 3.88 3.90 3.91 4.01 3.70 3.05 2.53 2.87 3.19 58.4 46.2 39.7 0.3 0.4 nd 0.2 nd nd nd 0.1 30.1 29.7 33.8 28.9 29.7 21.9 18.2 20.9 23.9 34.7 37.0 17.1 0.3 14.7 14.7 10.7 12.7 7.0 4.6 3.6 4.3 5.1 3.5 30.0 32.4 29.8 30.9 15.6 0.1 194 206 168 14.4 13.1 10.3 12.5 13.0 0.1 nd nd 0.3 0.2 123 143 169 0.1 nd nd 20.3 24.9 1.4 226 32.1 17.3 4.05 nd 101 618 2080 369 nd 340 201 65.4 0.4 340 1940 17.1 1.5

۲F.

nd: 検出限界以下.

Oceanochemistry Fransactions Vol.14, No.2, Dec.,

地点	透明度	水深	水温 ℃	pH*	溶存酸素 mg/l (%)	電導度 μS/cm	Al nmol/l	Ba nmol/l	Ca µmol/l	Fe nmol/l	K µmnol/l	Mg µmnol/l	Mo nmol/l	Na µmnol/l	P nmol/l	Si µmnol/l	Sr µmnol/l	V nmol/l	W pmcol/l
98-1		0 2.5 5 8 10	7.8 7.3 7.2 7.6	7.5 (8.9) 7.4 (8.7) 7.4 (8.7) 7.4 (8.7) 7.4 (8.7) 7.5 (8.7) 7.6 (8.7) 7.6 (8.7) 7.6 (8.7) 7.7 (8.7) 7.7 (8.7) 7.5 (8.9) 7.4 (8.7) 7.5 (8.9) 7.4 (8.7) 7.5 (8.7)	11.42 (99.1) 11.64 (99.8) 11.60 (99.4) 11.49 (98.2) 11.89 (102.7)	129 121 120 120 120	0.01 0.01 0.01 0.01 0.01	76.5 75.5 76.1 79.5 76.7	396 400 397 403 406	0.03 0.03 0.03 0.05 0.03	24.2 23.8 23.4 23.1 23.0	131 130 130 130 131	13.1 12.7 12.8 12.8 12.7	163 160 156 163 159	135 135 135 135 135 135	21.3 20.9 21.1 21.3 21.6	$1.32 \\ 1.32 \\ 1.31 \\ 1.32 \\ 1.33 \\ 1.33 \\ 1.34$	6.96 6.68 6.51 6.74	239 232 241 262 220
		20 30	7.2	7.4(8.6) 7.4(8.6) 7.4(8.5)	11.75(100.5) 11.76(100.5) 11.81(99.9)	120 120 120	nd nd	77.1	406 406 408	0.07	23.8 23.6 24.5	130 131	12.8	160 172	130 161	20.8 22.1	$1.34 \\ 1.33 \\ 1.33$	6.78 6.65	245 231
98-2	12.0	0 5 10 12.5 30 50 100 250 500 852 1625		7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2			0.01 nd 0.01 0.01 nd nd nd nd 0.01 0.01 0.01	78.2 78.5 77.7 77.4 78.0 77.8 79.6 78.7 78.8 78.5 77.4 71.6	399 398 396 397 404 409 412 410 406 406 408 402	0.01 0.00 0.01 nd nd nd nd nd nd nd nd nd	24.6 23.8 23.0 22.8 23.1 23.3 23.4 23.5 23.5 23.6 23.5 23.4	130 130 129 129 130 131 130 131 130 129 128	12.8 12.6 12.8 12.7 12.6 13.0 13.0 12.8 12.6 12.5 12.4 12.1	159 155 156 156 155 158 157 156 156 159 156	282 291 295 309 291 309 327 336 382 453 618	$\begin{array}{c} 31.8\\ 32.0\\ 32.1\\ 32.5\\ 32.7\\ 32.8\\ 32.6\\ 32.1\\ 31.3\\ 33.6\\ 43.3\\ 73.2 \end{array}$	$1.32 \\ 1.33 \\ 1.34 \\ 1.36 \\ 1.34 \\ 1.37 \\ 1.34 \\ 1.36 \\ 1.35 \\ $	$\begin{array}{c} 7.22 \\ 7.04 \\ 7.13 \\ 6.96 \\ 6.94 \\ 6.98 \\ 6.94 \\ 7.04 \\ 7.02 \\ 6.98 \\ 6.81 \\ 6.89 \end{array}$	273 249 273 253 282 256 262 254 298 258 258 253
98-BO	2.4	0 5 7	$14.9 \\ 14.5 \\ 13.4$	7.4 (8.6) 7.6 (8.6) 7.5 (8.7)	9.07 (92.7) 9.70 (91.7) 9.87 (97.7)	133 126 122	0.11 0.09 0.04	105 99.5 87.0	461 444 409	0.33 0.23 0.02	22.2 22.7 22.9	117 118 124	12.4 12.2 12.8	136 138 148	95 54 23	57.5 49.9 34.4	$1.38 \\ 1.36 \\ 1.34$	12.8 11.4 8.99	375 336 295
98-B1	6.0	0 5 10 15 20 30	13.4 13.4 12.8 10.5 8.7 7.8	7.4 (8.7) 7.5 (8.7) 7.4 (8.7) 7.3 (8.5) 7.3 (8.5) 7.4 (8.4)	9.72 (96.2) 9.65 (95.5) 10.00 (97.6) 10.56 (97.8) 11.21 (99.5) 11.17 (96.9)	122 122 120 120 119 119	0.03 0.03 0.10 0.02 0.01 0.01	89.3 85.2 82.5 81.5 78.5 78.9	416 411 406 408 405 399	0.02 0.03 0.02 0.01 0.02 0.02	23.2 23.3 23.6 23.7 23.6 23.3	126 124 125 128 130 130	12.7 12.6 12.1 12.7 12.9 12.8	163 146 145 150 151 148	27 9 27 136 181 272	34.0 33.7 31.8 31.5 28.9 30.1	1.36 1.33 1.33 1.32 1.31 1.32	8.82 8.93 8.51 7.53 7.02 7.32	297 289 250 245 240 247
98-B2	5.2	0 5 10 20 30 40 48	$ \begin{array}{r} 11.7 \\ 11.7 \\ 11.6 \\ 9.4 \\ 7.2 \\ 6.2 \\ 6.0 \\ \end{array} $	$\begin{array}{c} 7.6 & (8.9) \\ 7.6 & (9.0) \\ 7.6 & (8.9) \\ 7.5 & (8.7) \\ 7.3 & (8.5) \\ 7.2 & (8.4) \\ 7.2 & (8.3) \end{array}$	10.89 (103.7) 10.87 (103.5) 10.86 (103.2) 11.42 (103.0) 11.75 (100.4) 11.77 (98.1) 11.61 (96.3)	119 119 119 119 120 120 120	0.02 0.02 0.01 0.01 0.01 0.02 0.01	78.8 77.7 79.2 82.5 79.0 78.9 79.0	405 398 410 418 410 407 408	0.03 0.03 0.02 0.01 0.02 0.02 0.02	23.4 23.1 22.7 23.7 23.7 23.1 23.7	129 126 130 132 132 131 131	12.8 12.3 12.9 12.7 12.7 12.6 12.7	150 144 145 156 150 150 150	36 36 41 64 254 263 272	27.3 26.6 27.1 26.4 28.8 29.5 29.9	$1.32 \\ 1.30 \\ 1.33 \\ 1.37 \\ 1.33 \\ 1.34 \\ $	7.11 6.60 7.00 6.77 7.28 6.86 7.10	285 257 263 242 262 233 257
98-B3	5.5	0 5 10 20 30	12.7 11.2 11.2 9.7 7.2	7.6 (8.8) 7.6 (8.5) 7.6 (8.7) 7.4 (8.8) 7.4 (8.7) 7.4 (8.7)	10.20 (99.4) 10.45 (98.4) 10.51 (98.9) 10.91 (99.2) 11.78 (100.7)	123 120 120 120 120 120	0.03 0.02 0.02 0.01 0.02	84.3 80.8 79.6 78.9 81.8	418 405 400 401 398	$0.03 \\ 0.03 \\ 0.04 \\ 0.01 \\ 0.01$	23.2 22.5 23.2 22.9 23.3	127 129 130 131 130	12.6 12.8 12.8 13.1 13.0	148 149 151 151 157	25 nd 9 36 172	31.3 27.3 26.3 25.0 28.0	1.36 1.35 1.35 1.34 1.34	8.32 7.60 7.82 7.00 7.13	254 260 257 269 234

附表 III バイカル湖での各種化学成分の溶存態濃度 (1998年).

(98)

海洋化学研究 第14巻第2号 平成13年12月

附表 III(続)

地点	透明度	水深	水温 ℃	рН*	溶存酸素 mg/l (%)	電導度 µS/c∎	Al nmol/l	Ba nmol/l	Ca µmnol/l	Fe n m ol/l	K µmnol/l	Mg µmnol/l	Mo nmol/l	Na µmnol/l	P nmol/l	Si µmol/l	Sr µmnol/l	V nmaol/l	W pmol/l
98-B3		50 75 100	5.5 5.1 6.3	7.3 (8.5) 7.2 (8.4) 7.2 (8.3)	11.78 (96.4) 11.84 (95.9) 11.75 (98.9)	120 121 120	0.01 0.01 0.01	77.6 76.1 77.2	400 398 403	0.01 0.01 0.01	23.4 23.7 23.7	130 129 131	12.7 12.8 12.8	150 149 151	272 318 319	27.9 28.9 29.4	$1.33 \\ 1.32 \\ 1.34$	7.47 7.14 7.13	266 266 233
98-B4	5.5	0 10 200	11.6 9.4 6.0	7.7 (9.0) 7.6 (8.4) 7.2 (8.8)	10.70 (101.7) 11.63 (96.4)	120 120 120	0.01 0.02 0.01	76.9 74.8 78.3	396 394 408	0.01 0.01 nd	23.9 23.3 23.5	129 129 132	12.6 12.6 12.8	150 147 156	25 18 338	26.4 25.8 32.0	$1.33 \\ 1.33 \\ 1.36$	7.14 7.25 7.06	255 260 255
98-B5	5.0	0 5 10 20 30 50 100 200 300 500	$ \begin{array}{c} 11.7\\ 11.6\\ 10.3\\ 6.0\\ 5.4\\ 5.0\\ 5.1\\ 5.0\\ 5.2\\ 5.0\\ 5.2\\ 5.0\\ \end{array} $	$\begin{array}{c} 7.6 & (9.0) \\ 7.6 & (8.9) \\ 7.6 & (8.8) \\ 7.4 & (8.4) \\ 7.2 & (8.3) \\ 7.2 & (8.4) \\ 7.2 & (8.4) \\ 7.2 & (8.3) \\ 7.2 & (8.3) \\ 7.2 & (8.2) \end{array}$	$\begin{array}{c} 10.84 \ (103.2) \\ 10.78 \ (102.4) \\ 10.85 \ (100.0) \\ 11.87 \ (98.4) \\ 11.55 \ (94.3) \\ 11.66 \ (94.2) \\ 11.56 \ (93.2) \\ 11.42 \ (92.3) \\ 11.15 \ (90.6) \\ 11.02 \ (89.1) \end{array}$	120 119 121 120 121 121 121 121 121 120 120	0.02 0.01 0.01 nd 0.01 0.01 0.01 0.01 0.01	74.5 75.9 75.3 77.4 77.9 77.4 78.3 78.4 77.0 78.2	396 387 394 399 395 394 399 398 396 398	nd nd nd nd nd nd 0.01 nd nd	23.1 23.3 22.9 23.8 23.5 23.4 23.4 22.9 23.4 22.9 23.4 24.0	128 127 130 131 130 130 131 130 130 130	12.9 12.7 13.2 13.1 12.7 13.1 13.2 13.0 12.9 12.9	150 148 149 147 147 149 150 148 151	27 36 19 240 290 310 305 341 372 412	26.8 25.9 26.2 29.4 29.4 29.5 30.1 31.2 33.2 37.1	$1.32 \\ 1.31 \\ 1.32 \\ 1.35 \\ 1.33 \\ 1.34 \\ 1.35 \\ 1.35 \\ 1.33 \\ 1.33 \\ 1.33 $	$\begin{array}{c} 7.08 \\ 6.90 \\ 7.04 \\ 7.06 \\ 7.01 \\ 7.00 \\ 7.01 \\ 7.43 \\ 7.10 \\ 7.06 \end{array}$	277 255 272 264 241 246 254 251 260 247
98-B6	5.3	0 10 1000	12.0 10.8 5.5	7.6 (8.9) 7.6 (8.9) 7.2 (8.1)	11.90 (114.1) 11.16 (104.1) 10.42 (85.3)	122 119 120	0.01 0.01 0.01	77.7 77.2 74.5	389 390 390	0.01 nd 0.01	23.5 23.4 23.1	128 129 129	12.7 13.1 12.9	145 149 145	27 54 493	27.1 27.5 51.0	$1.31 \\ 1.33 \\ 1.34$	7.02 6.93 7.02	275 286 253
98-B7	10.0	0 10 1600	11.6 8.8 5.7	7.5 (8.7) 7.4 (8.6) 7.2 (8.0)	11.90 (113.1) 12.17 (108.2) 9.89 (81.4)	122 119 118	0.01 0.01 0.00	77.7 77.0 72.1	398 393 397	0.01 0.02 0.01	22.3 22.7 22.4	130 128 130	12.9 12.8 13.1	148 147 148	152 172 601	29.8 29.4 71.5	1.33 1.33 0.87	7.00 7.07 6.80	270 260 219
98-C1	6.0	0 8	13.0 8.8	7.6 7.7	9.88 (96.9) 11.91 (105.9)	121 119	0.02	74.2 77.6	388 400	0.02 0.01	22.0 22.4	125 128	$13.0 \\ 12.6$	154 151	30 9	24.6 28.5	1.29 1.34	6.80 6.53	264 235
98-C2	5.3	0 21	$14.3 \\ 10.4$	7.6 7.6	9.99 (100.8) 11.28 (104.2)	118 119	0.02	72.9 78.3	384 396	0.03 nd	21.7 22.1	125 128	$13.0 \\ 12.9$	151 151	18 10	23.5 29.1	1.28 1.34	7.14 6.73	258 273
98-C3	5.2	0 10 50	12.2 10.9 6.0	7.7 7.7 7.4	11.10 (106.9) 11.27 (105.4) 11.85 (98.3)	120 119 120	0.01 0.01 0.01	79.4 81.1 76.7	403 411 402	0.02 0.01 nd	22.9 22.8 22.5	127 129 129	$12.5 \\ 12.5 \\ 12.4$	150 162 156	19 17 308	28.7 29.5 32.2	$1.31 \\ 1.33 \\ 1.34$	7.43 7.07 6.51	290 256 250
98-C4	5.5	0 10 100	12.0 11.0 5.9	7.8 7.8 7.2	11.04 (105.9) 11.10 (104.0) 11.83 (97.9)	119 120 119	0.01 0.01 nd	79.5 79.3 79.0	407 409 410	0.02 0.01 0.03	20.9 22.2 22.7	126 127 130	12.4 12.3 12.6	159 151 157	17 18 334	28.9 29.0 33.7	$1.31 \\ 1.33 \\ 1.34$	7.50 6.84 7.26	257 308 280
98-C5	5.5	0 10 500	$13.3 \\ 11.3 \\ 6.1$	7.7 7.6 7.3	10.74 (106.0) 11.25 (106.2) 11.20 (93.1)	122 119 119	0.01 0.01 0.01	80.5 80.4 78.6	412 411 405	0.05 nd nd	22.5 22.4 23.1	127 127 130	12.5 12.0 12.4	152 155 152	20 11 413	$29.3 \\ 28.3 \\ 44.4$	$1.32 \\ 1.34 \\ 1.34$	8.45 6.58 6.57	287 234 244
98-C6	13.5	0 10 750	7.4 5.8 5.3	7.4 7.3 (8.5) 7.3 (8.3)	12.24 (105.2) 12.27 (101.2) 10.96 (89.3)	120 119 120	0.01 nd 0.01	77.9 77.7 77.7	407 398 401	nd 0.01 nd	22.4 22.4 22.6	129 127 129	12.2 12.5 12.2	162 151 155	258 251 422	29.6 29.1 47.7	$1.34 \\ 1.33 \\ 1.33$	6.25 6.38 6.33	266 254 259

pH':比色法(電極法). nd:検出限界以下.

Transactions of The Research Institute of Oceanochemistry Vol.14, No.2, Dec., 2001

(99)

地点	水深	Al nmol/l	Ba pmol/l	Ca nmol/l	Cu nmol/l	Fe nmol/l	K nmol/l	Mg nmol/l	Mn nmol/l	Ni nmol/l	Na nmol/l	P nmol/l	Sr pmol/l	Ti n n ol/l	V nmaol/l	Zn nmol/l
98-1	0 2.5 5 8 10 15 20 30	78.2 91.0 57.2 80.5 62.2 71.0 57.0 78.1	408 380 606 578 738 780 917 693	97.8 94.4 55.1 50.7 48.5 43.5 47.9 43.2	0.4 1.2 nd 0.3 nd nd nd nd	27.0 26.3 25.4 25.5 25.0 25.7 22.0 26.7	89.2 78.0 113 90.6 127 74.6 103 78.1	52.3 52.1 43.7 39.9 46.1 37.1 40.3 39.2	4.18 4.40 4.30 4.28 4.52 4.61 4.39 4.68	nd nd nd nd nd nd nd nd	33.8 24.4 33.2 25.1 42.4 15.5 25.9 20.8	122 138 171 155 191 131 172 138	364 399 134 219 130 165 150 167	2.22 2.29 1.28 1.87 1.22 2.06 1.18 1.61	0.5 1.2 nd 0.5 nd 0.1 nd 0.1	1.0 0.4 0.1 1.0 0.5 0.2 0.2 0.2 0.2
98-2	0 5 10 12.5 30 50 100 250 500 852 1625	33.6 50.1 31.0 21.1 46.8 42.4 34.3 38.9 40.9 82.3 27.9 72.1	175 262 178 126 232 211 151 161 125 191 42 237	29.8 17.9 27.8 16.7 17.9 20.9 15.2 19.2 27.3 12.8 20.8 9.0	nd 1.4 nd 0.2 0.2 nd 0.1 nd 0.4 nd 0.4	$17.0 \\ 18.1 \\ 15.7 \\ 14.5 \\ 17.0 \\ 17.6 \\ 16.6 \\ 17.3 \\ 20.0 \\ 28.7 \\ 16.1 \\ 28.6 \\ 17.3 \\ 28.6 \\ 1000 \\ $	31.0 25.6 33.6 25.1 29.4 24.0 18.3 11.4 10.8 10.1 7.0 10.2	17.5 14.5 15.6 13.3 15.7 15.2 13.4 11.2 11.1 13.3 11.2 10.3	2.42 2.42 2.28 2.17 2.55 2.56 2.32 2.28 2.23 2.77 2.02 9.80	nd nd nd nd nd nd nd nd nd nd nd	$16.8 \\ 7.3 \\ 238 \\ 22.7 \\ 19.4 \\ 7.6 \\ 44.4 \\ 13.2 \\ 10.2 \\ 23.7 \\ 138 \\ 28.9 \\$	56.9 55.7 55.0 42.4 55.1 54.5 35.0 25.2 13.3 6.7 nd 3.6	66 124 45 5 102 87 44 61 43 111 18 117	$1.03 \\ 1.12 \\ 1.01 \\ 0.38 \\ 0.88 \\ 1.42 \\ 0.64 \\ 0.94 \\ 0.96 \\ 1.87 \\ 0.52 \\ 1.29 \\ 1.29 \\ 1.00 \\ 0.00 \\ $	nd 0.6 nd 0.3 0.2 nd nd nd 0.4 nd 0.6	3.97.52.72.91.63.13.92.96.81.12.40.3
98-BO	0 5 7	6040 7140 7810	16100 16200 19200	1380 1500 1900	5.0 1.2 1.3	2810 2990 2740	1150 1240 1450	1590 1660 2050	178 151 122	0.6 nd 1.2	1540 1700 2240	436 412 340	12700 13500 17200	199 204 259	9.4 6.2 6.6	$7.3 \\ 5.4 \\ 5.9$
98-B1	0 5 10 15 20 30	594 561 687 583 588 1430	1670 1560 1790 1450 1080 3060	183 154 195 144 124 275	nd 0.3 nd 0.0 0.6 1.1	404 312 361 290 276 557	169 150 168 123 121 292	170 152 190 154 147 335	42.3 39.2 37.0 28.0 19.1 23.8	nd nd nd nd nd	166 162 182 164 159 438	215 196 173 125 122 178	1260 1160 1410 1100 1130 2560	17.2 15.7 19.4 16.8 24.6 40.9	0.4 1.1 nd nd 1.3 1.9	1.4 1.4 2.0 0.7 2.0 1.6
98-B2	0 5 10 20 30 40 48	161 158 158 223 113 344 807	907 889 837 703 256 943 1780	$113 \\98.0 \\101 \\73.7 \\41.5 \\62.0 \\153$	nd 0.4 nd 0.2 nd 0.2 0.5	108 93.2 84.7 87.6 47.9 134 306	70.9 67.7 73.2 92.3 42.8 93.3 149	68.1 59.9 62.5 65.1 34.2 78.8 179	13.6 12.9 12.4 9.56 5.22 8.33 16.2	nd nd nd nd nd nd	47.4 26.8 37.3 39.2 21.8 81.2 184	187 193 190 169 79.4 88.5 79.3	544 514 449 366 183 539 1340	4.34 3.67 3.47 4.64 2.28 11.1 23.3	nd 0.5 0.1 0.5 nd 0.4 1.1	0.9 0.4 0.2 0.1 nd 0.6 0.6
98-B3	0 5 10 20 30	490 582 548 189 118	1490 1480 1290 459 339	184 159 166 101 41.0	nd 0.6 nd nd 0.2	304 268 257 81.7 51.9	140 156 155 126 57.7	145 162 162 75.5 38.3	34.8 25.2 22.4 9.07 4.79	nd nd nd nd	125 133 145 58.0 29.2	214 209 196 169 92.9	1060 1190 1090 424 250	14.8 15.7 15.8 3.92 2.89	nd 1.2 nd nd 0.5	1.9 1.1 1.0 0.0 0.8

附表 IV バイカル湖での各種化学成分の懸濁態濃度 (1998年).

附表IV(続)

地点	水深	Al nmol/l	Ba pmol/l	Ca nmol/l	Cu nmol/l	Fe nmol/l	K nmol/l	Mg nmol/l	Mn nmol/l	Ni nmol/l	Na nmol/l	P nmol/l	Sr pmol/l	Ti n n ol/l	V nmol/l	Zn nmol/l
98-B3	50 75 100	118 162 291	327 505 671	43.2 37.7 50.2	nd nd 0.2	58.1 67.3 108	30.4 37.3 61.8	40.2 40.8 62.3	4.81 5.39 6.25	nd nd nd	41.8 38.1 85.5	34.9 28.8 27.0	162 208 427	3.13 4.38 7.95	nd nd 0.4	nd 0.5 0.5
98-B4	0 10 200	133 139 238	573 1500 567	84.0 106 46.8	0.1 0.3 nd	71.5 72.6 86.6	61.7 85.5 53.2	$51.0 \\ 60.5 \\ 53.9$	$11.1 \\ 8.64 \\ 8.05$	0.6 nd 0.9	27.0 24.0 62.2	170 185 27.3	503 385 340	3.06 3.89 6.09	0.3 0.5 nd	0.3 6.5 2.8
98-85	0 5 10 20 30 50 100 200 300 500	82.3 127 84.1 28.6 27.8 23.9 31.7 48.6 71.8 82.6	407 837 828 326 145 61 98 114 159 162	105 115 74.6 32.3 23.7 18.3 13.7 16.5 17.8 19.6	nd nd nd nd nd nd nd nd nd	$56.8 \\ 57.7 \\ 45.5 \\ 21.5 \\ 27.3 \\ 16.9 \\ 23.2 \\ 29.0 \\ 35.2$	54.2 62.7 109 47.1 30.4 12.9 13.5 13.4 13.7 17.4	54.1 56.1 53.4 27.4 19.9 12.0 10.7 14.0 18.0 21.3	8.86 8.29 7.85 3.17 3.00 3.06 2.94 3.05 3.32 4.31	nd nd nd nd 0.2 nd nd nd nd nd	$29.3 \\ 30.3 \\ 41.6 \\ 10.2 \\ 8.6 \\ 149 \\ 8.3 \\ 7.3 \\ 24.1 \\ 16.9 \\$	$168 \\ 189 \\ 206 \\ 91.0 \\ 47.8 \\ 20.1 \\ 16.7 \\ 12.6 \\ 5.7 \\ 3.2 \\$	287 499 247 27 nd nd 32 54 79 78	$1.81 \\ 2.87 \\ 1.58 \\ 0.50 \\ 0.22 \\ 0.26 \\ 0.46 \\ 1.53 \\ 1.58 \\ 1.86$	nd 0.3 nd nd nd nd nd nd nd nd	nd 0.7 0.1 nd 0.1 0.2 0.2 0.0 0.1
98-B6	0 10 1000	67.4 72.7 37.2	595 666 41	84.9 66.0 10.8	nd nd nd	47.5 35.3 17.6	44.4 75.2 9.8	41.8 41.5 9.7	7.34 6.56 1.88	1.3 0.2 nd	15.9 513 11.2	164 171 0.8	327 270 nd	1.28 1.60 0.45	nd 0.2 nd	0.6 0.6 0.1
98-B7	0 10 1600	40.6 21.0 119	115 196 1210	$44.3 \\ 41.3 \\ 27.5$	1.0 nd nd	21.7 13.1 51.4	74.8 82.7 24.2	34.2 33.7 21.9	2.58 2.76 10.7	nd nd nd	20.4 270 140	$126 \\ 144 \\ 4.7$	149 83 168	0.89 0.20 2.52	nd nd nd	2.1 0.3 1.3
98-C1	0 8	152 175	570 714	163 109	nd nd	$\begin{array}{c} 137 \\ 108 \end{array}$	$\begin{array}{c} 108\\148\end{array}$	97.3 102	15.8 9.12	nd 6.9	35.2 52.8	190 251	1220 460	5.70 5.40	nd nd	2.0
98-C2	0 21	184 569	543 1420	165 228	nd nd	135 305	$\begin{array}{c} 117\\ 247\end{array}$	99.3 237	17.2 12.9	nd nd	121 174	186 344	1060 1170	5.84 19.1	nd nd	0.5 2.3
98-C3	0 10 50	107 129 102	468 479 313	153 105 35.3	nd nd nd	72.0 88.4 55.4	86.0 160 39.1	72.2 85.9 34.6	$12.3 \\ 14.6 \\ 4.95$	nd nd nd	55.0 81.2 28.9	159 275 62.3	541 399 175	3.43 3.26 2.32	nd nd nd	1.1 0.7 nd
98-C4	0 10 100	88.7 112 122	473 451 267	95.5 86.8 46.6	0.4 0.3 nd	58.0 69.1 64.2	87.5 137 41.1	55.4 68.9 39.3	12.6 14.2 4.57	nd nd nd	24.4 62.9 274	$ \begin{array}{r} 165 \\ 243 \\ 34.2 \\ \end{array} $	386 384 167	2.20 2.92 2.96	0.7 0.4 nd	1.2 0.6 1.8
98-C5	0 10 500	108 119 67.8	479 479 196	106 92.1 14.7	nd 0.3 nd	87.4 69.8 28.2	64.9 124 10.5	64.6 76.7 14.1	16.6 12.3 3.15	nd nd nd	38.2 47.7 13.3	175 229 4.4	599 398 101	2.33 3.06 1.23	nd 0.6 0.2	0.3 0.3 0.7
98-C6	0 10 750	18.2 29.8 71.0	123 200 199	30.9 28.5 15.6	nd nd 0.2	$16.0 \\ 15.4 \\ 28.7$	22.8 36.5 11.9	17.7 19.7 14.2	1.44 2.13 4.03	nd nd nd	12.2 172 127	59.7 76.0 4.4	83 100 108	0.13 0.94 1.27	nd 0.1 0.3	0.3 0.3 0.4

nd: 検出限界以下.

Transactions of The Research Institute of Oceanochemistry Vol.14, No.2, Dec., 2001

(101)

	水深	Ba nmol/l	Ca µmol/l	Fe µmol/l	Mg μmol/l	Mn µmol/l	P nmol/l	Si µmol/l	Sr µmol/l
99-S1	0	67.9	364	nd	117	nd	14	5.2	1.14
	10	67.2	363	nd	110	nd	97	7 2	1.10
	25	70 1	366	nd	120	nd	98	97	1.14
	50	70.8	376	nd	120	nd	254	11.3	1.17
	100	71.3	370	nd	121	nd	265	12.2	1.19
	200	73.7	379	nd	122	nd	287	15.1	1.19
	400	72.8	373	nd	122	nd	355	27.7	1.18
	700	70.4	373	nd	121	nd	395	33.2	1.17
99-0	0	123.6	457	1.78	89	0.1	215	112.2	1.23
99-1	0	134.5	500	2.04	90	0.1	32	117.6	1.30
99-2	0	117.6	454	1.19	101	0.1	358	80.5	1.26
99-3	0	89.9	410	0.24	115	nd	15	33.6	1.23
99-4	0	76.1	409	0.24	128	nd	4	11.9	1.27
99-5	0	75.2	402	0.05	128	nd	114	10.9	1.27
	50	78.6	400	0.06	127	nd	115	5.2	1.25
99-6	0	77.2	405	0.02	129	nd	4	9.5	1.28
	5	79.0	403	nd	127	nd	15	9.5	1.27
	10	74.5	393	nd	128	nd	23	8.2	1.27
	15	77.0	392	nd	129	nd	7	6.1	1.27
	20	70.4	396	na	128	nd	57	5.9	1.20
	40	77 8	400	0.02	129	nd	203	0.0	1.20
	150	77 3	402	nd	130	nd	205	9.5	1 28
	250	77.1	402	nd	128	nd	346	24.3	1.27
	400	77.1	401	nd	130	nd	377	33.4	1.29
	550	74.5	392	nd	126	nd	385	33.3	1.24

附表 V バイカル湖での各種化学成分の溶存態濃度(1999年).

nd: 検出限界以下.

附表 VI バイカル湖での各種化学成分の懸濁態濃度(1999年).

地点	水深	chl-a µg/l	Pheo µg/l	Al nmol/l	Ba pmol/l	C µmol/l	Ca nmol/l	Cu nmol/l	Cr nmol/l	Fe nmol/l	Mg nmol/l
99-S1	0 1 25 50 100 200 400	2.21 2.29 3.38 3.08 0.69 0.21 0.18 0.14	0.10 0.04 nd 1.42 0.40 0.21 0.24 0.15	62.4 81.6 77.2 32.3 49.2 32.3 25.0	337 584 475 208 175 82 45	27.3 26.6 33.0 14.1 5.5 5.2 5.4 3.6	105 132 121 79.0 25.1 22.1 22.5	0.2 1.1 0.7 nd 0.5 nd nd	0.2 1.9 1.9 0.4 0.8 0.5 nd	23.4 24.8 44.8 46.9 16.9 14.2 15.4	54.6 61.2 70.2 48.9 18.0 14.9 13.8
	700	0.03	0.21	79.3	147	1.40	25.0	0.1	0.9	32.6	18.9
99-0	0	0.81	3.50	55200	214000	142	19200	24.7	41.0	10000	13000
99-1 99-2	0	6.63	2.93	86000	212000	142	19500	26.1	46 2	29900	22900
99-3	0	1.71	0.30	1710	4400	26.0	510	0.3	11.4	620	483
99-4	0	1.47	0.06	181	799	19.7	137	0.4	6.1	106	78.6
99-5	0 50	1.31 2.08	0.12	163 106	1010 2420	23.4 10.1	168 86.3	0.6	$3.4 \\ 4.1$	102 37.7	84.1 46.0
99-6	0 5 10 15 20 40 80 150 250 400 550	$1.60 \\ 1.79 \\ 2.79 \\ 2.77 \\ 1.68 \\ 1.05 \\ 0.95 \\ 1.00 \\ 0.72 \\ 0.25 \\ 0.20 $	$\begin{array}{c} 0.19\\ 0.19\\ 0.06\\ 0.85\\ 0.79\\ 0.30\\ 0.36\\ 0.09\\ 0.03\\ 0.14\\ 0.21\\ \end{array}$	$\begin{array}{c} 346\\ 301\\ 195\\ 193\\ 163\\ 75.9\\ 73.8\\ 39.8\\ 23.3\\ 51.8\\ 74.5\\ \end{array}$	2240 1510 967 724 1060 376 268 325 209 215 377	$\begin{array}{c} 22.4\\ 22.1\\ 22.3\\ 24.0\\ 11.7\\ 7.7\\ 6.2\\ 5.3\\ 3.5\\ 2.5\\ 2.8\end{array}$	193 166 175 136 123 64.9 33.6 20.1 19.3 15.2 34.1	0.4 nd 0.7 1.1 0.6 nd 0.9 0.7 nd 0.7 nd	$1.7 \\ 2.9 \\ 5.2 \\ 5.1 \\ 3.2 \\ 2.8 \\ 2.4 \\ 1.6 \\ 1.4 \\ 1.9 \\ 1.9 \\ 1.9 \\ 1.9 \\ 1.9 \\ 1.7 \\ 1.9 $	163 157 112 83.9 70.1 37.7 26.0 14.5 13.8 20.3 30.9	125 111 92.8 91.4 63.9 34.7 21.6 13.2 10.4 11.5 21.1
地点	水深	Mn nmol/l	N µmol/l	Ni nmol/l	P nmol/l	Pb nmol/l	Si nmol/l	Sr pmol/l	Ti nmol/l	V nmol/l	Zn nmol/l
99-S1	0 1 10 25 50 100 200 400 700	3.83 4.46 3.49 3.24 3.35 3.16 3.12 3.69	$\begin{array}{c} 3.44\\ 3.49\\ 4.16\\ 2.37\\ 0.64\\ 0.44\\ 0.38\\ 0.26\end{array}$	nd nd nd nd nd nd nd	110 122 162 121 40.2 22.1 31.9 10.1	nd nd nd nd nd nd nd nd	$1.00 \\ 0.67 \\ 1.53 \\ 1.46 \\ 1.33 \\ 2.22 \\ 2.44 \\ 4.88$	222 405 354 184 94 42 0 88	1.81 1.97 4.67 1.36 1.37 1.01 0.30 nd 2.02	nd 0.4 0.2 nd 0.2 nd nd nd	2.2 2.1 3.3 1.1 0.7 0.5 0.6 nd 1.2
99-0	0	929	12.5	13.8	1980	29	312	174000	2660	71.3	72.0
99-1	0	651	10.1	9.6	1320	23	187	110000	1650	49.3	45.2
99-2	0	823	12.6	12.6	1770	29	282	175000	2670	71.0	72.9
99-3	0	46.0	3.51	nd	198	nd	7.76	3770	53.1	0.6	3.9
99-4	0	18.6	2.08	nd	110	nd	1.23	479	5.27	nd	0.9
99-5	0 50	20.2 5.43	3.02 1.27	nd nd	151 105	nd 3	$1.24 \\ 5.74$	685 477	4.75 2.72	nd 0.2	1.4 4.3
99-6	0 5 10 15 20 40 80 150 250 400 550	34.1 29.9 20.1 8.55 6.16 4.32 3.95 2.87 2.82 2.81 3.80	3.02 3.09 3.12 3.53 1.64 0.90 0.71 0.74 0.45 0.05 0.27	nd nd 0.4 0.2 nd nd 0.5 nd nd nd	$166 \\ 164 \\ 173 \\ 228 \\ 158 \\ 72.2 \\ 65.8 \\ 56.0 \\ 44.4 \\ 42.6 \\ 40.3$	1 nd 1 nd 1 nd nd nd nd nd	$1.95 \\ 1.41 \\ 1.51 \\ 1.14 \\ 1.55 \\ 4.85 \\ 3.33 \\ 4.64 \\ 3.57 \\ 2.78 \\ 2.15 $	1050 847 742 670 521 222 201 116 45 91 163	9.89 10.2 5.69 5.49 16.9 1.87 1.95 0.91 0.49 1.35 1.72	0.2 nd 0.6 0.7 0.4 nd 0.6 0.5 nd 0.3 nd	$ \begin{array}{c} 1.6\\ 18.8\\ 0.7\\ 1.2\\ 25.0\\ 0.4\\ 0.9\\ 0.3\\ 0.2\\ 0.2\\ 0.1\\ \end{array} $

nd:検出限界以下.