第2回海洋化学学術賞 受賞記念講演会

海水中の微量元素の 規制因子について

桑本融*

京都大学理学部助教授桑本 融先生は、この度「海水中の微量元素のトレースキャラクタリゼーション」の業績により、第二回海洋化学学術賞(石橋賞)を受賞されました。ここに、本年4月28日京大会館にて行なわれました受賞講演の内容をもとに御寄稿いただきましたので、掲載いたします。

1. はじめに

この度, 光栄にも, 海洋化学研究所, 第2回海 洋化学学術賞を拝受しましたこと,諸先輩の御指 導とともに研究に御協力賜りました同僚,後輩の 皆様に心から感謝している次第であります。思い 起こせば、石橋雅義先生の門をたたきましたのは、 約30数年前,光陰矢の如しと申しますが、つい先 日のような気がしています。御推薦賜りました 「海水中の微量元素のトレース・キャラクタリー ゼーションに関する研究」も,当初,卒業研究で 「海水中の溶存元素の水酸化第二鉄沈殿による共 沈一のテーマを頂きました時に始まるもので、こ れを基にして進展したのであります。そのさい、 どの元素から始めたらよいのか決めかね、指示を 受けるべく、先生の許へ参上しましたところ、海 水には、全ての元素が溶存している、アルカリ元 素から始め給え、とのことでありましたが、炎光 分析装置の開発は数年後のこと、ナトリウムは酢 酸ウラニル, カリウムは過塩素酸塩として定量す るほかなく、共同沈殿量を測定するのに困難を極

めました。その頃,海水中の全塩分量あるいは塩 分は,海水の採取場所によって多少の変化はある が, 主成分, Na⁺, K⁺, Ca²⁺, Mg²⁺, Sr²⁺, B, Cl⁻, SO¹⁻, Br⁻, F⁻, 間の割合は一定であるというこ とは知られていました。(海水のナトリウムの量 は、全カチオンからCa, Mg, K, その他のカチオ ンを差し引く計算値で求めますが、1967年Riley らは、全アルカリ量を硫酸塩で重量分析した後、 カリウムをテトラフェニルホウ素で重量分析して、 差し引き、塩素量に対するNa(g/kg)との比は 0.5567、標準偏差 0.0007 を得ましたが、その値は、 Culkinの値 0.5555 より僅かに大きいけれども, 海水の特性値に影響を与える程の偏差値ではない とされている)。海の化学は華やかにそしてその 進歩に今昔の感があるが、本質的な海の解明には 程遠く、研究の余地は無限にあると考えられるの で、私達の仕事を中心にして、海の研究について 述べたいとおもう。

2. 平衡系としての海

海洋への元素の流入は、1、河川から 2、大

海洋化学研究 2,2 (1987)

表1 河川水と海水の組成(J.P. Riley, R. Chester)

Atomic Number	Element	Sea Water (jig/liter)	Streams (µg/liter)	
	1 1	1 10 × 10	1.10×10^{4}	
1	holium	0.0072	1.10 \ 10	
2	liahium	170	3	
3	handling	0.0006	0	
5	berghildh	4450	10	
5	portion (inorgania)	28,000	11 500	
0	(dissolved organic)	500	11,000	
7	nitrogen (dissolved N)	15 000	a	
	(as NO ⁻¹ NO ⁻¹ NH ⁺¹	10,000	-	
	and dissolved organic)	670	> 226	
8	oxygen (dissolved O)	6000	a	
J. J	$(as H \Omega)$	$8.83 \times 10^{\circ}$	$8.83 \times 10^{*}$	
9	fluorine	1300	100	
10	neon	0.120	a	
11	sodium	1.08×10^{7}	6300	
12	magnesium	$1.29 \times 10^{\circ}$	4100	
13	aluminum	1	400	
14	silicon	0–2900	6100	
15	phosphorus	0-88	20	
16	sulfur	9.04×10^{3}	5600	
17	chlorine	1.94×10^{7}	7800	
18	argon	450	a	
19	potassium	$3.92 \times 10^{\circ}$	2300	
20	calcium	4.11 × 10°	-15,000	
21	scandium	0.0004	0.004	
22	titanium	1	3	
23	vanadium	1.9	0.9	
24	chromium	0.2	1 7	
25	manganese	1.9	670	
26	iron	0.05	01	
27	cobalt	9	0.3	
28	nickel	2	7	
29	zinc	2	20	
31	gallium	0.03	0.09	
32	germanium	0.06	a	
33	arsenic	2.6	2	
34	selenium	0.090	0.2	
35	bromine	67,300	20	
36	krypton	0.21	a	
37	rubidium	120	1	
38	strontium	8100	70	
39	yttrium	0.013	0.07	
40	zirconium	0.026	a	
41	niobium	0.015	a 0.0	
42	molybdenum	10	0.0	
47	silver	0.28	0.3	
40	indium	0.11	a 0	
49	tin	0.81	a	
51	antimony	0.33	2	
52	tellurium	a	a	
53	iodine	64	7	
54	xenon	0.47	a	
55	cesium	0.30	0.02	
56	barium	20	20	
57	lanthanum	0.0034	0.2	
74	tungsten	<0.001	0.03	
75	rhenium	0.0084	a	
76	osmium	8	a	
77	iridium		•	
78	platinum		•	
90	thorium	<0.0005	0.1	
92	uranium	3.3	0.3	

No data or reasonable estimates available.

表2 化石燃料燃焼による元素の大気への移行(D.W.Hood 1971)

		Fessil Fuel Mobilization (× 10° grams/year)	
Element	Coal	КО	Total
Li	9		
Be	0.41	0.00006	0.41
В	10.5	0.0003	10.5
Na	280	0.33	280
Mg	280	0.02	280
Al	1400	0.08	1400
Р	70		
S	2800	550	3400
Cl	140		
К	140		
Ca	1400	0.82	1400
Sc	0.7	0.0002	0.7
Ti	70	0.02	70
v	3.5	8.2	12
Cr	1.4	0.05	1.5
Mn	7	0.02	7
Fe	1400	0.41	1400
Co	0.7	0.03	0.7
Ni	2.1	1.6	3.7
Cu	2.1	0.023	2.1
Zn	7	0.04	7
Ca	1	0.002	1
Ge	0.7	0.0002	0.7
As	0.7	0.002	0.7
Se	0.42	0.03	0.45
Rb	14		
Sr	70	0.02	70
Y	1.4	0.0002	1.4
Мо	0.7	1.6	2.3
Ag	0.07	0.00002	0.07
Cd		0.002	
Sn	0.28	0.002	0.28
Ba	70	0.02	70
La	1.4	0.0008	1.4
Ce	1.6	0.002	1.6
Pr	0.31		
Nd	0.65		
Sm	0.22		

K. K. Bertine and E. D. Goldberg, 1971, Science, v. 173, pp. 233-235.

表3 熱水および河川からの物質の供給

熱水および河川よりの物質の供拾瓜の比較 (Edmond, 1979)

	供給瓜 (10" mol yr=")		
	热水	河川	
Li	0.16	0.014	
К	1.25	1.9	
Rb	0.0024	0.0004	
Mg	-7.7	5.3	
Ca	3.4	12.0	
Ba	0.00245	0.01	
Si	3.1	6.4	
SO,1-	- 3.75	3.7	
F	-0.011	0.165	
CO,	1.3	20	
Ni	-0.000025		
Mn	0.19~0.059	0.051	
Р	< 0.001	3	

 M. L. Bender, G. P. Klinkhammer, and D. W. Spencer, Deep-Sea Res, 24(1977), 799-812. 気から 3, 熱水から の流入を考えることが出 来るが, 海水に溶存している元素の量が変化しな いとすると, 流入と同時に, その相当量は系外へ 排出されなければならない。従って, 海は定常状 態にあると考えられ, 平衡論的に取り扱うことが できる。

1933年海水は岩石の風化によって生成したもの であると考えたGoldschmidt は,海水中の元素 の量と地殻中の量を比較して,風化した火成岩の 重量X,砕屑岩の重量Y,海水の重量Z,ある元素 の火成岩,砕屑岩,海水中の平均含有量 x,y,z %とすると次の式が成り立ち,X・x/100=Y・y /100+Z・z/100+

化学沈殿物中の元素量

火成岩と砕屑岩の間には、Y=0.97X 成立し、 ナトリウムは化学沈殿物中には移行しないで、溶 液中にのみ存在すると仮定すると, 化学沈殿物中 の元素量の項は消去する事ができ,計算上,海水 1kgの岩石相当量は600gと推定した。その結果, 溶液中のCl⁻, Br⁻, イオウ, ホウ素は, それぞれ, 6700, 2000, 300, 240%となり、除去過程は存在 せず, 岩石以外の供給源が存在しなければ成らな いこことが予測された。その供給源には火山、熱 水,あるいは、地球生成時の酸性液体とも考える ことが出来るであろう。定常状態の海水中に溶存 する元素の量は、大部分、風化により、河川水で 運ばれ流入したものと考えられるために、海水と 河川の量を比較すると(表1)、大部分の元素は、 溶解して蓄積されるけれども、けい素、スカンジ ウム, クロム, マンガン, 鉄, 銅, 亜鉛, タングス テンなどは、海水に流入すると同時に海水系外へ 除去され沈殿するものと推定される。さらに、本 誌前号において紹介された大気汚染としての化石 燃料からもわかるように、 燃焼によって大気へ移 り、海洋へ落下する量は、イオウ、カルシウム、 鉄は年間数100万トンと推定されており(表2).

また,熱水からの供給も無視することができない。 熱水および河川よりの物質の供給量を比較した文 献によると(表3),リチウム,ルビジウム,マン ガンなどは河川水よりも熱水からの供給量のほう が著しいことがわかる。

3. 海水中の溶存規制因子

海が定常状態にあり,平衡系にあるとすると,供 給された物質は,その相当量が排出されなければな らないことは,既に,述べた通りであるが,これを 規制する因子は,次のようにまとめることができる。

- 1. 物理要因として, 移流, 拡散
- 2. 物理・化学的要因として,吸着,溶出とくに, 金属酸化物,生体起因沈降粒子粘土など
- 3. 化学的要因として, 溶存化学種の状態変化
- 4. 生物学的要因として、プランクトンによる濃 縮と溶出

化学的な立場から、2以下の要因について述べる ことにする。

表4 酸化物および水素化物の等電点

Natural a-Fe ₂ 0 ₃	5.4-6.9
Synthetic @-Fe ₂ 0 ₃	8.0-9.3
7-Fe ₂ 0 ₃	6.7
a-FeOOH (Goethite)	6.0-6.8
7-FeOOH (Lepidocrocite)	6.6-7.4
Amorphous Hydroxide	7.2-8.5
SiO ₂ (Quartz)	1.8-2.8
SiO ₂ (Sols And Gels)	1.5-2.3
a-MnO₂(Cryptmelane)	4.5 ± 0.5
β-MnO₂(Pyrolusite)	$7\ .\ 3\pm0\ .\ 2$
	4.6±0.2
7-Mn0 ₂	5.5 ± 0.2
ð-MnO₂(birnessite)	1.5±2.8
Mn(11)-Manganite	1.8 ± 0.5

3.1 吸着

微細懸濁粒子の表面荷電の等電点(iso-electric po-int of charge)は、その点を示す溶液のpHで 表される。自然界の微細懸濁粒子の表面荷殿は, 末端官能基が粘土であれば-Si-O-, 有機物で あれば、-COO-の如く、等電点は酸性側にあり、 Mgを含む蛇紋岩を除く、ほぼ90%以上の物質が マイナス荷電(表4)を示す。

海水の pHが表面でほぼ8近傍であることを考え ると、海水中のカチオンは、微細懸濁粒子に吸着 して沈降するものと考えられる。このような考え 方並びに結論は卒業論文以来,多くの方々の協力 を得られたものであり、その概略を述べることに する。

3.1.1.各種イオンの水酸化第2鉄沈殿に対す る共同沈殿

海水中のイオンの共同沈殿挙動を検討するため には、出来るだけ系を簡単にして考察するこのが 望ましい。この為,吸着質には、溶液のpHを反 映して荷電を変化させる酸素酸イオンを用い,吸 着体は、目的イオンを含む溶液中に生成させるの ではなく,一定の条件で新しく調製した水酸化第 二鉄沈殿を目的イオンを含む溶液中に添加する方 法を用いた。これは, 吸蔵を防止するためと, 溶 液の pHによる吸着体の変化を可及的に均一化す るよう配慮したことによる。目的イオンにモリブ デン酸イオンを用いて, pH-共沈率曲線を求め た結果、当時、均一沈殿あるいは不均一沈殿法で 得られていた水酸化第二沈殿の生成する範囲では 完全に共沈するとされていた事実に反し、水酸化 第二沈殿の表面荷電の変化に応じて共沈率が、著 しく変化することを見いだした。すなわち, pH 4では、ほぼ90%吸着するけれども pH が上昇す るにつれて共沈率は急激に減少し、pH8以上で は全く吸着しないことを見いだした。(図1)こ の事実は,吸着体である水酸化第二鉄沈殿の等電

点が, 6~8の間にあり, モリブデン酸イオンが, この pH領域であることを考えると、海水中での イオンと微細沈殿の間の相互関係である共沈は一 義的には, 沈殿の表面荷電によって支配されるも

図2 pHと沈率との関係(1960)

のと考えられる。事実,海水中でアニオンを形成 するモリブデン酸イオンは、 微細沈殿粒子の影響 を全く受けることなく溶存するので, 深さには影 響せず, 比較的多量に存在する。この事を確かめ る為に、 WO_4^{2-} (図2)、 HVO_4^{-} (図3)、 $H_2VO_4^{-}$ $(\boxtimes 3)$, UO_2^+ , $UO(CO_3)_3^{4-}$, SeO_3^{2-} $(\boxtimes 4 \sim 6)$, Cr³⁺, CrO²⁻(図7), Crアスコルビン塩酸(図8) を用いて吸着の検討を行ったが推論に誤りはな

海洋化学研究 2,2 (1987)

かった。

Fig. 4 Coprecipitation rate of Se and U on ferric hydroxide as a function of pH of sea water. (1967)

Fig. 5 Effect of bicarbonate concentration and pH on the coprecipitation rate of U (VI) on ferric hydroxide. 1: N_2 atmosphere, HCO_3^- absent, 2: HCO_3^- absent, borate buffer, 3: HCO_3^- eq. to sea water, 4: $HCO_3^- \times 10$ eq. to sea water. (1967)

Fig. 6 Effect of bicarbonate concentration and pH on the coprecipitation rate of selenium on ferric hydroxide. 1: HCO_3^- absent, 2: HCO_3^- eq. to sea water, 3: $HCO_3^- \times 10$ eq. to sea water. (1967)

3.1.2. 海水中のクロムの状態別分析への応用

すでに述べたように,溶解イオンの形状,イオ ン価によって吸着共沈率が異なるので,状態別分 析に応用することができる。海水中の無機,有機 可溶性化学種については,錯生成定数を求めた上 で,多くの化学種が計算によって推定されること は既に述べた。表5はd 無機化学種の一例であ る。このうちの,クロムについて考察してみよう。

海水中のクロムの溶存量の予測を,現在得られ ているデータを使用して熱力学的に行うと,すべ て,6価のクロム酸イオンにもかかわらず,実測 すると,3価のクロムイオンが存在するというこ とが知られていた。1966年,137度Wに沿って, 太平洋縦断の観測航海が計画されたのを機会にこ れに参加,クロムの状態分析を試みた。そのさい の,観測点,分析方法,結果を,図9,図10,表6, 7,8,に示す。Cr³⁺/Cr⁵⁺の比をみると,ほぼ全 域に渡って一定の値を示すが,南緯30度以南にお いて異常な数値を示している。プランクトンの異 常増殖域である事を考えるとCr³⁺に何等かの影 響を与えているものと考えられる。

この為, クロムの存在量に有機物が関与してい るものと推測, 分析法を変更(図11), Cr³⁺, Cr⁶⁺, Cr-錯体の3部に分析して定量した。紀伊半島 沖, 日本海, 太平洋の結果を, 図12, 13, 14に示 す。

元素	· 推定主化学種 es	元素	推定主化学種 ^{secics}
н	Н,О	Rb	Rb ⁺
Li	Li ⁺	Sr	Sr ²⁺
Be	BeOH ⁺ , (?)	Y	Y(OH)
В	$H_{1}BO_{1}, B(OH)_{1}^{-}$	Zr	$Zr(OH)_{n}^{4-n}(12)$
С	HCO,	Mo	MoO ₄ ²⁻
N	N,, NO,	Ag	AgCl,
0	н,о	Cd	CdCl ⁹ , (6,13)
F	F^{-} , MgF ⁺	Sn	$SnO(OH)_{1}^{-}$ (?)
Na	Na ⁺	Sb	$Sb(OH)_{6}^{-}$ (?)
Mg	Mg ²⁺	Te	HTcO,
Al	Al(OH)	I	$1^{-}, 10^{-}, 14, 15)$
Si	$Si(OH)_4$, MgH ₃ SiO ₄ ⁺ (?)(1)	Cs	Cs ⁺
D	UPO2- Mapo-	Ba	Ba ²⁺
r c	rro_4 , rro_4	La	La ³⁺
S Cl	SU ₄ , NaSU ₄	Ce	$Ce^{3+}(16)$
V V	V+	Pr	Pr ³⁺
C ₂	C_{2}^{2+}	Nd	Nd ³⁺ , NdOH ²⁺
Sc		other	
Ti	$\frac{3}{2}$	rare	Me ³⁺ , MeOH ²⁺ (16, 17, 18)
v	$H VO^{-} H VO^{2-}(2)$	carths	
Ċ	$C_{r}(OH)^{0}$ $C_{r}O^{2} - (3, 4, 5)$	Lu	LuOH2+
Mn	Mn^{2+} $MnCl^{+}$	w	WO^{2-}
Fe	Fe(OH) ⁺		1104
Co	C_0^{2+} $C_0C_0^{0}(7)$	Re	ReO ₄
Ni	Ni^{2+} NiCO ⁰ (7)	Au	$AuCl_2^-$ (19)
Cu	$C_{\mu}C_{\nu}O^{\nu}C_{\mu}OH^{+}(6)$	Hg	$HgCl_{4}^{2-}$ (20)
Zn	Z_nOH^+ , Z_n^{2+} , Z_nCO^0 (6-9)	Tl	?
Ga	Ga(OH)	РЬ	$PbCO_{3}^{o}, Pb(CO_{3})_{2}^{2-}$ (6. 21)
Ge	$GeO(OH)^{-}$, $GeO_{OH}^{2} = (7)$	Bi	BiO ⁺ , Bi(OH) ⁺ ₂ Bi ₆ (OH) ⁶⁺ ₁₂ ?(22)
As	HAsO ² -	Ra	Ra ⁴⁺
Se	SeO_{2}^{2} (10, 11)	Th	$Th(OH)_{n}^{-*} Th(CO_{3})_{n}^{-*}$ (?)
Br	Br ⁻	U	$UU_2(UU_3)_3^{-1}$ (23)

表5 海水中の推定無機化学種

J.P.Riley,ed."Chem.Oceanography"L)

図9 観測地点

Sample No.	Stn.	Posi	tion	Depth (m)	Cr ³⁺ (µg/1)	Cr ⁶⁺ (µg/1)	Total Cr	Cr ³⁺ /Cr ⁶⁺	D.O.(m1/1)
		Latitude	Longitude						
1	2	30 ⁰ 02.1N	170 ⁰ 03.1W	0	0.90	0.47	1.37	1.91	5.14
2	2	30 ⁰ 02.1N	170 ⁰ 03.1W	105	0.80	0.40	1.20	2.00	5.15
3	2	30 ⁰ 02.1N	170 ⁰ 03.1W	210			1.66		5.19
4	3	28 ⁰ 01.2N	170 ⁰ 05.9W	0	0.90	0.45	1.35	2.00	
5	5	26 ⁰ 54.8N	169 ⁰ 58.6W	0	0.96	0.14	1.10	6.85	4.84
6	8	23 ⁰ 58.5N	169 ⁰ 56.8W	0	0.13	0.27	0.40	0.48	4.73
7	10	23 ⁰ 58 N	170 ⁰ 02 W	0	Trace	0.52	0.52		
8	11	21 ⁰ 07.8N	170 ⁰ 02.1W	0	0.25	0.19	0.44	1.32	4.68
9	16	9 ⁰ 01.7N	170 ⁰ 01.0W	93	0.36	0.16	0.53	2.25	3.52
10	16	9 ⁰ 01.7N	170 ⁰ 01.0W	187	0.18	0.14	0.32	1.29	0.50
11	16	9 ⁰ 01.7N	170 ⁰ 01.0W	476	0.24	0.17	0.41	1.41	0.70
12	16	9 ⁰ 01.7N	170 ⁰ 01.0W	954	0.31	0.16	0.47	1.94	1.19
13	17	6 ⁰ 02.5N	169 ⁰ 54 W	0	0.33	0.11	0.44	3.00	4.54
14	18	3 ⁰ 02.2N	169 ⁰ 58.3W	0	0.17	0.15	0.32	1.13	4.57
15	19	0 ⁰ 00.9s	170 ⁰ 09.6W	0	0.05	0.09	0.14	0.56	4.49
16	20	3 ⁰ 00.95	170 ⁰ 00 W	0	0.40	0.20	0.60	2.00	4.60
17	21	6 ⁰ 09.35	170 ⁰ 04.6W	0	0.25	0.13	0.38	1.92	4.57
18	21	6 ⁰ 09.35	170 ⁰ 04.6W	44	0.47	0.18	0.65	2.61	4.53

表6 観測結果(その1)

Table Contents of Cr in Pacific Ocean

表7 観測結果(その2)

Table (co	ntinue	d) Posi	tion	Dooth (m)	(r^{3+})	Gr ⁶⁺ (1)	Total Cr	c= ³⁺ /c= ⁶⁺	D Q (m1/1)
Sample NO.	sen.	Latitude	Longitude	Depth (m)			IOLAI CI		D.0. (141/1)
19	21	6 ⁰ 09.3N	170 ⁰ 04.6W	86	0.37	0.11	0.48	3.36	4.54
20	21	6 ⁰ 09.3N	170 ⁰ 04.6W	3994	2.31	1.04	3.34	2.22	3.78
21	22	9 ⁰ 04.65	169 ⁰ 52.9W	0	0.32	0.11	0.43	2.90	4.49
22	25	19 ⁰ 59.75	170 ⁰ 03.2W	0	0.21	0.06	0.27	3.50	4.72
23	26	23 ⁰ 10.65	169 ⁰ 58.3W	0	0.39				4.73
24	26	23 ⁰ 10.65	169 ⁰ 58.3W	94	Trace	0.19	0.19		4.73
25	26	23 ⁰ 10.65	169 ⁰ 58.3W	187	0.17	0.12	0.29	1.42	4.38
26	26	23 ⁰ 10.65	169 ⁰ 58.3W	933	0.14	0.15	0.29	0.93	4.26
27	29	26 ⁰ 01.75	169 ⁰ 59.0w	0	0.04	0.06	0.10	0.67	4.93
28	29	26 ⁰ 01.75	169 ⁰ 59.0w	936	0.23	0.07	0.30	3.29	4.71
29	26	26 ⁰ 01.75	169 ⁰ 59.0W	3083		0.17			3.70
30	32	35 ⁰ 00.0s	169 ⁰ 59.1W	0	0.59				5.49
31	33	38 ⁰ 00.95	169 ⁰ 59.9W	٥	0.67	0.14	0.81	4.79	5.60
32	33	38 ⁰ 00.95	169 ⁰ 59.9W	48		0.15			5.89
33	33	38 ⁰ 00.95	169 ⁰ 59.9W	96	2.29	0.17	2.46	13.48	5.75
34	33	38 ⁰ 00.95	169 ⁰ 59.9W	192	1.13	0.13	1.46	10.23	5.12
35	33	38 ⁰ 00.95	169 ⁰ 59.9W	956	1.74	0.13	1.87	13.38	4.50
36	33	38 ⁰ 00.95	169 ⁰ 59.9W	5076	5.24	0.13	5.37	40.30	4.58
37	34	39 ⁰ 59.55	170 ⁰ 03.2W	0	0.92	0.07	0.99	13.14	5.73
38	35	42 ⁰ 01.25	170 ⁰ 18 W	0	1.47	0.11	1.58	13.36	5.81

海洋化学研究 2,2 (1987)

95

表8 観測結果(その3)

Table (cc	ntinue	ed)							
Sample No.	Stn.	Posi	tion	Depth (m)	$Cr^{3+}(\mu g/1)$	Cr ⁶⁺ (µg/]	l) Total Cr	Cr ³⁺ /Cr ⁶⁺	D.O.(m1/1)
and the second se		Latitude	Longitude	61792 - <u>-</u> 617979 - 6676345	,.				2000/00/01 200/00/00 (DADA)
39	36	44 ⁰ 00 s	170 ⁰ 00 W	0	1.31	0.11	1.41	11.90	6.00
40	38	48 ⁰ 00 S	170 ⁰ 00 W	0	0.23				6.14
41	40	52 ⁰ 00 S	170 ⁰ 00 W	0	0.26				6.44
42	40	52 ⁰ 00 S	170 ⁰ 00 W	46	1.34	0.17	1.51	7.88	6.59
43	40	52 ⁰ 00 S	170 ⁰ 00 W	91	2.55	0.21	2.76	12.14	6.52
44	40	52 ⁰ 00 S	170 ⁰ 00 W	184		0.21			6.19
45	40	52 ⁰ 00 S	170 ⁰ 00 W	3133	1.09	0.10	1.19	10.90	4.57
46	42	55 ⁰ 55.08	1 69⁰58. 0W	0	0.43	0.15	0.58	2.87	6.66
47	44	59 ⁰ 59.88	169 ⁰ 54.6W	0	0.37	0.15	0.52	2.47	7.12
48	46	63 ⁰ 58.95	170 ⁰ 01.7W	0	0.50				7.91
49	48	68 ⁰ 00.15	170 ⁰ 06.9W	0	0.29	0.06	0.35	4.83	8.43
50	48	68 ⁰ 00.15	170 ⁰ 06.9W	48	0.30				8.12
51	48	68 ⁰ 00.15	170 ⁰ 06 9W	192	0.47	0.13	0.60	3.61	4.82
52	48	68 ⁰ 00.1S	170 ⁰ 06.9W	962	0.69	0.03	0.72	23.00	4.64
53	48	68 ⁰ 00.15	170 ⁰ 06.9W	3145	0.89				5.23

ANALYSIS OF CHROMIC AND CHROMATE

図10 分析方法

および有機態Cr(Ⅲ),懸濁質中のCr 量の鉛直分布

図14 日本海44°11.9N, 138°56.4 Eの地点における無機態Cr(Ⅲ), Cr(Ⅵ) および懸濁質中のCr 量の鉛直分布

3.2 自然界における現象

3.2.1 粘土, マンガン酸化物への吸着

溶存を規制する因子は,除去過程を規制する因 子と言い代えることができる。3.1で吸着沈降 について, 私達が行った実験室内における基礎検 討の結果から自然界における現象を説明してきた が,海要一堆積物の間では,吸着のみならず溶出, イオン交換, 化学反応などが起こっている筈であ る。例えば,底泥中にはマンガン瘤が存在してい ることが知られているが、マンガンの水酸化物は 吸着性が高いので、このマンガン瘤には重金属が 共沈濃縮している筈である。海水中の資源は一般 に分散資源であるのに,濃縮資源として考えられ ているのはこの様な理由による(表9)。又、海 水の主可溶性成分は、河川水を通して海に運ばれ るが、海水溶存量は一定であるので、流入相当量 は除去されなければならない。F. T. Mackenzie, R. M. Garrels (1966) は, 粘土が主要な役割を 果たしているものと考え, 次のような反応を示し

 $t_{c_{0}}$ Al₂Si₂₄O_{5.8}(OH)₄+Na⁺(Mg²⁺, K⁺)+SiO₂+ HCO₃⁻=Na_{0.33}Al_{2.33}Si_{3.67}O₁₆(OH)₂

(モンモリロナイト)

Mg5Al2Si3O10(OH)8	(緑泥石)
K0.5Al2.5Si3.5O10(OH)2	(イライト)
$+CO_2 + H_2O_3$	

表9 鉱物と共沈する重金属元素

10⁵年間に海で生成する鉱物とともに共沈する重金 属元素量(t)

炭酸塩	マンガン酸化物
(3.3±1.3)×10 ¹¹	1.2×10 ¹¹
(1.3~2.6)×10 ¹⁰	9×10 ⁹
$(1.2\pm0.5)\times10^{12}$	9×10°
$(1.8\pm1.2)\times10^{12}$	3.0×10 ¹²
	1.3×1014
9.1×10 ⁹ ? (3.9×10 ⁹)	1×10 ¹⁰
3.9×10 ¹³ ? (6.5×10 ¹²)	2×1014
(1.4±0.9)×10 ¹¹	6.1×10 ¹¹
$(1.6\pm0.5) imes10^{12}$	5.1×10 ¹²
$(1.0\pm0.5) imes10^{12}$	1.4×10 ¹²
$(3.4\pm0.7) imes10^{12}$	3.2×1012
	炭 酸 垣 (3.3±1.3)×10 ¹¹ (1.3~2.6)×10 ¹⁰ (1.2±0.5)×10 ¹² (1.8±1.2)×10 ¹² 9.1×10 ⁹ ? (3.9×10 ⁹) 3.9×10 ¹³ ? (6.5×10 ¹²) (1.4±0.9)×10 ¹¹ (1.6±0.5)×10 ¹² (1.0±0.5)×10 ¹² (3.4±0.7)×10 ¹²

炭酸塩生成量/年:1.3×10°t

マンガン酸化物生成量/年:2×10⁶t(最大値) (北野 康, 1978)

3.2.2 熱水の影響

更に, プレートテクニクス並びに熱水鉱床に関 する新知見から, 熱水循環に伴う海洋底では, 海 水中に溶存するNa⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, Fe²⁺, Mn²⁺, SO²⁻, HCO⁵⁻ などのイオンが, 図(15) に 示すように,玄武岩と作用したり,酸性溶液で還 元を受けて,硫化物,硫酸塩,けい酸塩を沈殿し たり,H₂,CO₂ガスを発生したりするなど除去過 程あるいは物質循環に大きな役割を果たしている と考えられている。

図15 海洋底の作用 CO_2 SiO₂ FeS. Mn²⁺(Black smoker) H_2 SO_1^2 執水循環(1977) Ca^{2+} CaSO₄ Ca²⁺, Mg²⁺, Na⁺, K⁺ 海水 SO₄⁻ HCO₃, Cl Cr(VI) H₂S FeS₂ $U(\mathbf{V}I)$ Fe(II) Fe2+, Mn2+ CuS ZnS $H^{+} Fe^{2+} Mn^{2+}$ Cu2+, Zn2+, Ca2+ sulphidmound → Mg²⁺+玄武岩+H₂O→Mg(OH)SiO₃ | +H⁺ chimney 形成 H±アルミノ珪酸塩 H^+ , H_2S , CO_2 ·H++玄武岩 陽イオン↑ \rightarrow SO₄²⁻+4H⁺+11Fe₂SiO₄ \rightarrow FeS₂ \downarrow +7Fe₃O₄ +11SiO₂ \downarrow +2H₂O (還元性の酸性溶液) $Cr(\mathbf{y})$ Fe(II) 1 (NiS CdS CuS) $U(\mathbf{V}I)$ $-HCO_{\overline{3}}$ -----CO₂-酸化物 CuS $Mg(OH)SiO_3 + FeS_2 + Fe_3O_4 + SiO_2 + CuS, NiS.CdS.$

 $Mg(OH)SiO_3 + FeS_2 + Fe_3O_4 + SiO_2 + CuS,NiS.CdS.$ (黄鉄鉱) (石英)

3. 2. 3. 錯生成

海水中の溶存微量元素の溶存状態は,生物学的 化学的に重要であるにもかかわらず,これまで溶 存量,分布の測定が多く,溶存形について実測さ れた例は比較的少ない。これは,海水が濃厚電 解質溶液であるとともに,錯生成する有機あるい は無機のリガンドが共存するため,同定したり, 10⁻⁶M以下の濃度の物質の直接定量することが困 難であることによる。しかし,海がすでに述べた ように定常状態にあるため,成分の平衡計算を行 うことによって,活量,存在比がまとまる,これ 海洋化学研究 **2**,2 (1987) に, 錯平衡の知見を導入すると, 実情に近いpH~ 成分濃度, pH~存在比pE(=Redox 電位/0.05 8) ~成分濃度などの関係がまとまり, 一定条件 下での化学種が推定できる,得られた結果から, 錯体の量と形態を規制する因子は,当然のことな がら共存する無機イオンと錯体を形成するリガン ドの絶対量と核対量に起因し, 一義的に無機リガ ンドと錯形成し, 有機酸, アミノ酸はあまり有効 でないとする報告があるが, 筆者らの経験(図8) , 杉村らの報告(表10)によると, 必ずしも同意 できるものではなく, 有機物は, かなりの因子に なっているものと推定される。

表10 北太平洋西部表面水の溶存全金属元素及び有機 形/全溶存量比の平均値 (杉村ら)

	A 307-1- D.	有機形/全溶存品(%)			
元索	(µg/l)	ー 中性・塩 基性(1)	酸性(2)	(1)+(2)	
Al	0.94 ± 0.33	14 ± 4	8±2	21 ± 5	
v	1.7 ± 0.3	46 ± 12	0	46 ± 12	
Mn	0.25 ± 0.08	16 ± 9	0	16 ± 9	
Fe	1.31 ± 0.37	30 ± 16	51 ± 21	82 ± 11	
Co	0.05 ± 0.02	91 ± 13	0	91 ± 13	
Ni	0.46 ± 0.24	22 ± 13	6±2	28 ± 12	
Cu	0.64 ± 0.21	66 ± 13	12 ± 5	78±11	
Zn	3.9 ± 1.5	27 ± 13	9 ± 4	37 ± 13	
Se	0.08 ± 0.02	20 ± 6	0	20 ± 6	
Mo	9.4 ± 1.3	10 ± 5	0	10 ± 5	
٨g	0.09 ± 0.04	34 ± 17	0	34 ± 17	
Cd	0.04 ± 0.02	64 ± 19	14 ± 10	78 ± 15	
U	3.47 ± 0.13	0	8±6	8±6	

で表されるように,表面で薄く,徐々に増加,深 層水で一定になるが,表層での濃度の減少はプラ ンクトンの影響とされる程著しい(表11,図16)。 詳細については省略する。

表11 微量元素のプランクトンへの濃縮係数

Element	Sea Water (jig/liter)	Plankton A	sh (1-E/E)	Concentration Factors (liters sea water per grams plankton ash)	
		Plants (Sargassum)	Animals	Plants (Sargassum)	Animals
р	0-88	20,000	20,000	≥230	≥230
Ag	0.3	0.3	0.3	1	1
Al	1	65	300	65	300
B	4450	1,200	140	0.27	0.031
Ba	20	120	52	6.0	2.5
Cd	0.11	8	13	72	120
Co	0.05	3	3	60	60
Cr	0.2	9	7	-45	35
Cu	2	270	270	135	135
Li	170	6	40	0.04	0.2
Ni	2	27	12	14	6
Sr	8100	8,500	930	1	0.1
Ti	1	26	120	26	120

• E. D. Goldberg, W. S. Broecker, M. G. Gross, and K. K. Turekian, 1971, Radioactivity in the Marine Environment, National Academy of Sciences, Washington.

3.2.4. プランクトンの影響

栄養塩, Cd, Zn, Cuなどの鉛直分布でよく知られているように、これらの濃度分布はYの左側

図16 海洋におけるCu,Mo,Pbの垂直分布 (K.W. Bruland 1979)

(64)

3.2.5.大気,海底堆積物の影響

大気降下物については勿論のことであるが,海 水中の生物が呼吸したり,分解したりすると,溶 存酸素は消費される。しかし,大部分はO2の循 環で補給され海水は酸化状態にある。補給が不足 するとO2が消費され,NO5 は還元され,SOF は HS⁻,S²⁻ となり海水は還元状態になる。また, 金属イオンが溶解積を越すようになれば沈積する。 この様な還元状態では,有機物や栄養塩は分解す ることなく沈積,蓄積して還元域を形成する。従っ て,海底堆積物は,吸着のみならず,酸化,還元 平衡にあり,溶存物質に対し,溶出と平固定に著 しく影響するものと考えてよい。

3. 2. 6. 難溶性沈殿生成

溶解平衡にあるイオンが,海水中で沈殿となり 沈降する場合で, Co, Pb, Mn にみられ, 横軸に 濃度, 縦軸に深度をとると, Yの右側のような深 度分布をとり, 逆に, Mo, V, W, UO₂(CO₃)²⁻の 酸素酸, 錯イオンのように, 海要のpHでアニオ ンを生成するイオンは, 深度にかかわらず濃度分 布がほぼ一定となる(図16)。

3.3 おわりに

環境から人間活動を切りはなして考えられない 私どもにとって,最も密接な関係にある海水を主 題として,化学元素を中心にして述べた。将来, これらの研究は,単なる溶存量の分析定量から濃 厚電解質溶液としての海水中での性格を物理化学 的に明らかにしながら,化学種を同定,その挙動 を解明する必要があるものと考える。