コロイド分散液の美しい世界

大久保 恒 夫*

1. はじめに

自然界には多くのコロイド分散液が存在して いる.表1に示すように,界面で隔てられた小 さな粒子系はすべてコロイド分散系である.コ ロイド粒子の大きさは溶媒分子(水など)より 十分大きい必要があって球粒子では,直径が約 30 nm から 0.1 mm くらいまでを指す.大きさ の限界は粒子の沈降速度によっても変動する. 濁った汚水やペンキ,牛乳から合成される無機, 高分子粒子,また,大きな酵素やベシクル,膜, 重合したタバコモザイクウイルス,ゲル,更に は多くの人工的な分子集合体もコロイド粒子で ある.一般的には濁った分散液はコロイド粒子 が分散していると考えてよい.

		分散質		
		気体	液体	固体
分散媒	気体		エーロゾル 霧、雲	エーロゾル 煙、スモッグ
	液体	泡 あわ	エマルジョン 牛乳、マヨネーズ	ソル、分散液 ペンキ、コーヒー
	固体	岡体泡 スポンジ	固体エマルジョン 水和シリカゲル	固体分散体 ステンドグラス

表1. 多様なコロイド分散系

私どもは長年,コロイド結晶に代表されるエ ネルギー保存的なコロイド粒子の3次元自己組 織化現象を調査してきた¹⁾.コロイド結晶にお いては粒子間に働く静電的な斥力相互作用を上 手に引き出すことが出来れば,いとも容易に目 も眩む数のコロイド粒子が数秒の内に結晶状に

*岐阜大学名誉教授.コロイド組織化研究所所長

配列する.また,私どもは15年ほど前から自 然界で生じているエネルギー散逸型の構造形成 に興味を抱き,カバーガラス上においた数滴の コロイド分散液が乾燥する過程で形成される構 造(乾燥散逸構造)の調査を行っている.コロ イド分散液や低分子,高分子溶液の濡れ,膨潤, 溶解,対流,沈降,局所的な固化の協奏的な構 造形成過程を系統的に調査している²⁾.本稿で はコロイド結晶とコロイド分散液の散逸構造に 関して述べる.

2. コロイド結晶

2.1. コロイド結晶の格子構造とモロホロジー

私どもは世界で初めて最大8mmにわたる 巨大なコロイド単結晶を発現することに成功し た³⁻⁶⁾.近接写真撮影の例を図1に示す.巨大 なコロイド結晶の発現には電気二重層を最大限 に広げ,静電的斥力相互作用を遠距離にわたっ て作用させる必要がある.更に、結晶化の臨界 粒子濃度を極限にまで下げて核形成速度を限界 まで下げることにより、系内で生成する核の数 を出来るだけ少なくする必要がある。私どもは 粒径が100 nm 程度のポリスチレンやシリカの コロイド粒子分散液をイオン交換樹脂により 10年間程度脱塩して液内のイオン濃度をコロ イド粒子の対イオン濃度と水の解離に基づく H⁺とOH⁻イオン濃度和(2×10⁻⁷M)との総 和を極限にまで下げる工夫をした. 試料液の徹 底した脱塩には大変長期間が必要なので、未だ

第302回京都化学者クラブ例会(平成27年8月1日)講演

に我々を超える巨大なコロイド単結晶の発現に は成功していない模様である.最近,極めて濃 厚なコロイド分散液で巨大結晶が発現したとの 報告があるが,容器壁に沿って不均一核から生 成した単結晶が容器壁面から同じ方向にエピタ キシャルに成長したために見かけ上巨大に見え るに過ぎない.安定な単結晶は均一核の数を極 限にまで減らす以外には実現出来ないと思われ る.

図 1. コロイド結晶 コロイド分散液にイオン交換樹脂を添加!

コロイド結晶は金属やタンパク質結晶、氷な どの一般の結晶と酷似している. コロイド結晶 の結晶弾性率が極めて低い. それでもコロイド 結晶は結晶そのものである。結晶は固いと考え るのは科学的にはナンセンスであろう.本来. 物の固さは単位体積中の粒子(原子でも分子で もコロイド粒子でも良い)数と温度によって決 定される.一番小さな原子の集合である金属が 固いのは*粒子(原子) 密度が高い*ことに由来す る. また. 系内の核の数が少ないほど巨大単結 晶になることも結晶全体に共通の現象である. ここで興味深いことは、結晶成長における核は 高分子のラジカル重合反応における開始剤にも 対応していることである。開始剤濃度を下げる ほど分子量が増大する.重合反応も結晶成長と 類似な現象として捉えることが出来る.

2.2. コロイド結晶のダイナミクス

言うまでもないことながら「万物は動く」. 物質はこれを構成している原子や分子、さらに はコロイド粒子の分布の時間変化の様子によっ て固体、液体、気体の三つの相に変わる、固体 では構成粒子は与えられた場所で並進振動的な 熱運動をしている. Lindemann 則によればそ の振動幅は隣接粒子間距離の3%から10%程度 である.液体では各構成粒子は決まった場所も なく激しくぶつかりながら並進的な熱運動をし ている.ただし、最近接粒子間距離はほぼ等し くなっている. また、気体では自由に互いにぶ つかり合いながら激しい熱運動を行っている. どんな物質でもその内部では構成粒子が激しく 運動していると言えよう.特に、コロイド粒子 が構成粒子である場合にはその熱運動はブラウ ン運動と言われる、興味深いことに、構成粒子 が粒子間距離の5%程度並進振動しているのが 顕微鏡を通して肉眼で観察される。ただし、光 学顕微鏡によるコロイド結晶の観察には粒子と カバーガラスとの相互作用や入射光の熱が完全 には除去されず粒子の擾乱がさけられない.残 念ながら信頼出来る顕微鏡観察の論文は極めて 数が少ない.これに関連して言えば、一部の研 究者により主張されたコロイド結晶の**海島モデ** ルや引力説,また高分子イオン溶液の規則構造 **説**などは真実ではない、実験結果に対する解釈 が誤っている¹⁾.

図2はコロイド結晶を発現させる重要な因子 を纏めたものである.すでに述べたように,コ ロイド結晶の発現にはコロイド分散液の高度な 脱塩によって,粒子の周りに形成される**電気**二 **重層**を極度に広げて粒子間の静電的な斥力相互 作用を遠距離的にする必要がある.コロイド結 晶のモロホロジーは図1に示すように一般の結 晶と何ら変わることは無い.つまり,単結晶が 粒界を隔てて密集している²⁾.

更に, 粒子のゆらぎは結晶内では協奏的 (Synchronous) であって, 結晶特有の性質を 持っている. 私どもはコロイド結晶に電場をか けて光学的な性質の変化(**電気光学効果**)を調 べた. 図3に示すように, 波形変換効果, 高調 波発生効果, 特性振動数発現効果, 励起振動効 果などはコロイド結晶の有する重要な電気光学 効果特性であるがいずれも構成粒子の**ダイナミ クス**に由来している⁷⁾.

図3. コロイド結晶の電場応答性

最近,球状のゲル粒子が発現する**ゲル結晶**が 詳細に研究された^{2.8.9)}.ハードなコロイド粒子 では明瞭な界面が存在するのに比べて,ゲル粒 子の界面はぼんやりしているのでかなり高濃度 にしないと結晶化しないことが判明した.ここ では,ゲル結晶の詳細は省略する.

3. コロイド分散液の散逸構造

基板上に数滴のコロイド分散液をセットして から乾燥に至るまでのパターンはエネルギー散 逸構造である.乾燥パターンの発現までには図 4に示すように種々の散逸パターンが協奏的に 発現している.また,基板が膨潤や溶解を起こ す場合には,膨潤パターンや溶解パターンも協 奏的な過程に加わることになる.

図4. 分散液や溶液の乾燥過程

3.1. 対流散逸パターン

寺田寅彦は1930年代に水面上の墨汁の分布 を詳細に調査した.そして,墨膜を圧縮して固 体構造を発現させた.これは,類似の Langmuir-Blogdet 膜の研究がなされたよりも 古い.また,寺田は墨膜に現れるスポーク状の パターンから重力対流による細胞渦を初めて解 明した(図5参照).バナール(Benard)は20

図5. 対流パターン

世紀の初頭,底の平らな容器に小さな金属の小 片を分散させた液体を入れ,これを均一に加熱 することの出来るホットプレート上に置いた時 に美しい散逸構造を見出した.これはバナール セルとよばれる.正六角形のパターンが理想的 であるが変形することが多い.六角形の中心か ら液が上昇して,六角形の縁から下がる²⁾.

対流パターンの一例としてミルク入りコー ヒーの時計皿中での対流パターンを図6に示す. セットした直後は不規則な対流が見られるが, 10分もすると外側にスポーク線が無数に出来 てくる.また1時間後には数本のスポーク線が 合体した**クラスター**が生成する.クラスターは 時間とともに変化している.対流過程の最終段 階では多くのクラスターが動的に集合離散を繰 り返しながら15時間後にはバンドルとよばれ る群れ(図6の15時間21分後では大きく3群 に別れている)が生成した.

図 6. クリーム入りコーヒーの対流パターン変化 時計皿中,液温:70℃から20℃へ

対流構造の成長過程は次の6段階に纏められ よう.(1)初期段階における液の不規則な循環 過程,(2)液面での中心から外部へのグローバ ルな対流,(3)変形したバナールセルの形成,(4) 対流中期における液面での外部から中心に向か うグローバルな対流の逆転とブロードリングの 形成,(5)同時に生じる外側でのスポーク線の 成長,(6)最終的に生じるスポーク線の成長に よるクラスターやバンドルの形成である. バンドル構造は次に発現する沈降パターンでもある²⁾.

私どもは乾燥散逸パターンを無重力下で調査 しているが、重力対流が消失する無重力下でも、 地上と類似の乾燥パターンが発現して説明に苦 慮した.しかし、温度差に連動した界面張力差 で発現するマランゴニ対流が重力に依存しない ことに気付いてから実験結果が理解出来た²⁾.

3.2. 沈降散逸パターン

筆者はビジネスホテルなどで供される紙パッ ク入りのお茶を静置すると茶椀の勾配面にブ ロードリングパターンが現れることを気づいた. これは、お茶のコロイド粒子が適当に大きくか つ比重が水に比較してかなり大きいので、コロ イド分散液は対流を生じつつも粒子の沈降を生 じるためである、しかし、容器底部に到達した 粒子は直接底部に接触することは無く、厚さの 違いはあれ、低分子イオンから成る電気二重層 に囲まれている. 容器表面も電気二重層に覆わ れているので、粒子は容器底部に直接には接触 せずふんわりと落下した状態である.従って粒 子は沈降状態においても容器上をスライドし易 く並進運動がさかんに起こっている。 容器が水 平でないとより低い所へ流れる現象が顕微鏡観 察される、しかし、溶媒や粒子には対流によっ て容器の中心底部から外側に流される力も働く. したがって、粒子が時間とともに勾配部に集ま りブロードリング構造が形成される。粒子が小 さいほど対流にながされるために容器のより上 部にリングが形成される。典型的な沈降散逸パ ターンを図7に示した²⁾. **a**と**b**が容器の上面 からと側面からのお茶の写真である。c は薄め た味噌汁のブロードリング状の沈降散逸パター ンである. d-fはミルク入りコーヒーの沈降

図7. 沈降パターン

パターンの例である.

興味深いことにカバーガラスだけでなく,ガ ラスシャーレでも時計皿でもブロードリングパ ターンが発現する.また,コロイド粒子の形が 球状ではなく例えば板状の場合にはブロードリ ングだけでなく,中心部にも粒子の沈降領域が 出現する.写真は省略したが分別した板状のベ ントナイト分散液の場合にも中心部に山状の沈 降散逸パターンが発現する.板状の粒子の場合 には底部面に平行な方向への運動が球上粒子に 比較して制限されることに由来すると考えられ る.粒子の形状や大きさが沈降散逸パターンに 影響することは粒子情報の乾燥パターンへの伝 達の面からも興味深い.

3.3. ぬれ散逸パターン

液体が基板表面上に濡れる現象は溶液や分散 液が乾燥する過程で最初に起こる重要な過程の 一つである.カバーガラスなどの典型的な水に 不溶な基板では、乾燥過程の中で2~5%程度液 滴のサイズが増加するのが一般的である¹⁰⁻¹³⁾. 基板が液体で濡れる現象は基板上の気相が液相 で置換される物理的な反応として理解される. この濡れ反応を決める重要な因子は水滴と基板 との親水的および疎水的な相互作用である.溶 質の疎水性、親水性に対応して濡れ反応はそれ ぞれ抑制ないし促進される¹⁴⁾.

3.4. 膨潤・溶解散逸パターン

現在,主に調査している分野である¹⁵⁾,例 えば、 基板が水膨潤性、水溶解性の場合、 そこ へ一滴の水を垂らすと皿状など種々のパターン を生じ、更に溶解現象が一連の乾燥に至る散逸 パターンへと協奏的に作用する. これまで、親 水性高分子基板に対する研究が報告されてい る¹⁶⁾.興味深い実験がD. Jishiashvil教授 (Georgian Tech. Univ., Georgia) らにより報告 された²⁾. 彼らはシリコンウエハーに Ge:GeO。 を蒸着した基板上に水滴を落として室温で乾燥 させたところ、唐草模様の美しいパターンを観 察した(図8参照). Ge は水に不溶であるが GeO2は水溶性であるので両者の協奏作用でパ ターンが発現したと考えられる. 無機基板上で 溶解過程が乾燥過程に加わった数少ない例であ る.

図8. Ge:GeO₂ 蒸着シリコンウエハー上での水滴 からの乾燥構造

3.5. 乾燥散逸パターン

Si substrate

コロイド分散液の乾燥過程の最終パターンが 乾燥散逸構造である.図9は粒径が25 nmか ら1 µmに及ぶシリカ粒子分散液のカバーガラ ス上での乾燥散逸パターンを比較した図である. 小さなコロイド粒子分散液では乾燥フィルムは 透明になり、極めて多くのスポーク状クラック が発生する. 粒径の増加とともにフィルムは青 みを帯び, ついで黄色みを帯びるようになり, 最後には白くなる. そして, クラックの数が粒 径の増加とともに急激に減少する. 更にすべて の分散液で乾燥するとブロードリングが発現す る.

Patterns formed for silicaspheres at 25°C. In water, Ø=0.0333,0.1 mL, a: CS22p, b: CS45, e: CS82d: CS161, e: CS301, f: CS1001, length of the bar is 5.0 mm 図 9. 粒子情報 〈粒子径〉の乾燥パターンへの伝達

ところが,コロイド粒子の形が球形ではなく, 板状の分別ベントナイト粒子の水分散液の場合 には,乾燥散逸パターンにはブロードリングの 他に中心部にも粒子の蓄積が観察された.特に, NaClを添加すると中心部の盛り上がりが顕著 になりやがては饅頭状に変わる.粒子の形を反 映して乾燥パターンが変化することは極めて興 味深い.また,乾燥パターンの原型が沈降パ ターンですでに発現していて,乾燥に伴ってよ りファインな構造になることが明らかになった.

乾燥散逸構造には既述した肉眼で観察される マクロなパターンの他に,光学顕微鏡でしか観 察できないミクロな構造も現れる.図10は単 分散ポリスチレン粒子およびコロイダルシリカ 分散液の乾燥フィルムのミクロパターンの一例 である.フラクタルパターンが観察された.更 にマクロなパターンからミクロなパターンへは フラクタル的に**階層構造**をとりながら順次移行 していることが多い.顕微鏡の対物レンズの倍 率を順次上げていくと別のパターンが現れてく るのが観察される.

また,シリカ試料液に NaCl が共存した時の 顕微鏡写真を図 11 に示した.乾燥過程でコロ イド粒子と NaCl 分子が互いに別れつつも協奏 的に相互作用して美しいパターンを形成してい る.

Microscopic drying patterns of silica spheres (1.2 μ m in diameter) in the presence of NaCl in a glass dish at 24 °C. ϕ = 0.00129, 10 ml, a [NaCl] = 0.0003 M, b 0.001 M, c 0.003 M.

図11. 乾燥過程での粒子・塩構造体の形成

3.6. 乾燥過程における情報伝達

私どもの乾燥パターン調査の主な目的は**溶質** や溶媒,環境などの情報を知ることにある.こ れまでの実験の集積から得られた各種情報と乾 燥パターンとの関連性を表2にまとめた.その 中で,乾燥パターン特有の現象も多々観察され る.例えば,ブロードリング内の高分子の単結 晶サイズは高分子濃度の増加とともに増加する. これは,溶液や分散液中での単結晶サイズの濃

Information		Drying Patterns		
Concentration	иþ	Broad-ring size	иþ	
		Broad-ring shape, $S(S)$	broaden (down)	
		Broad-ring height	иþ	
		Spoke-line number	down	
		Fractal dimension	up or insensitive	
		Single crystal size	иþ	
Salt	иþ	Broad ring	up or down	
		Bumpy-shaped broad-ring		
		Central round hill, from broad ring		
		Spoke line number	down	
Temperature	иþ	Broad-ring shape, S (S')	sharþ , uþ	
		Broad-ring size	иþ	
		Spoke-line number	down	
Humidity	иþ	Broad-ring size	down	
		Broad-ring shape, $S(S)$	broaden, down	
		Spoke-line number	down	
Surface tension	down	Pattern area, Broad-ring size	иþ	
Polarity of solvent	иþ	Pattern area	down	
		Drying time	иþ	
Particle size	иþ	Broad-ring size	down	
		Spoke-line number	down	
Anisotropic particles, from spheres		Central round-hill, from broad-ring		
		Spoke-line disappear		
Gel spheres		Flame-like (Flickering) spoke line		
		Ordering (net, lattice, etc.) of agglomerates		
Mixture of different size spheres		Multiple broad rings		
		Segregation, small outer, large inner		
Hydrophobicity	иþ	Broad-ring size	down	
Molecular weight, polymer up		Broad-ring size (d_f/d_i)	иþ	
Conformation extended, from coil		Cross-, star-, from arc-, string-		
Ordered structure (helix or b-sheet)		Broad-ring size	иþ	
HLB, surfactant	иþ	Broad ring, from round hill		
		Smooth surface, from rough		

表2. 分散液・溶液情報の乾燥パターンへの伝達の例

HLB, Hydrophile-lipophile balance.

度依存性と逆になっている.現在,乾燥パター ンから元の液体の素性がある程度推測されるよ うになった.例えば,会合体が規則的に配列し たパターンが現れれば溶質はゲル粒子であると 言える.

4. おわりに

コロイド結晶化と乾燥散逸構造形成には粒子 や媒質の**熱運動**がともに最も重要であることが 判明した.そして,前者では**粒子間の斥力相互** 作用が,後者では粒子一基板間の相互作用が重 要である.更に,後者では一滴の液体の乾燥パ ターンから溶質や媒質,環境情報が得られ,新 しい簡便な分析法が誕生すると期待している.

参考文献

- 1) T. Okubo, Acc. Chem. Res., 21, 281 (1988).
- T. Okubo, *Colloidal Organization*, Elsevier, Amsterdam, 2015.
- T. Okubo, *Naturwissenschaften*, **79**, 317 (1992).
- T. Okubo, *Colloid Polym. Sci.*, **271**, 190 (1993).
- 5) T. Okubo, Langmuir, 10, 1695 (1994).

- 6) T. Okubo, Langmuir, 10, 3529 (1994).
- T. Okubo, A. Tsuchida, M. Stoimenova, Adv. Colloid Interf. Sci., 162, 80 (2011).
- D. Suzuki et al., Colloid Polym. Sci., 289, 1799 (2011).
- S. Fujii et al., Colloid Polym. Sci., 292, 1627 (2014).
- 10) R. D. Deegan, Phys. Rev. E, 61, 475 (2000).
- M. Cachile, O. Benichou, A. M. Cazabat, Langmuir, 18, 7985 (2002).

- H. Hu, R. D. Larson, *Langmuir*, **21**, 3963 (2005).
- S. N. Bonn, S. Rafai, A. Azouni, D. Bonn, J. Fluid Mech., 549, 307 (2006).
- T. Okubo, Colloid Polym. Sci., 294, 19 (2016).
- 15) T. Okubo, Colloid Surf. B. Biointerf., 140, 481 (2016).
- M. Gonuguntla, A. Sharma, *Langmuir*, 20, 3456 (2004).