電子顕微鏡による局所分析の新展開

1. はじめに

現在では原子の実在性を疑う人はいないと思 われるが、20世紀の初頭にはまだ多くの議論 があったようである.それに解決を与えたのが アインシュタインのブラウン運動の理論とペラ ンの実験であった.それにより、アボガドロ数 の値や原子サイズが明らかにされたが、原子を 観てみたいという願望は残されたままであっ た.本稿では、原子の可視化を夢見て20世紀 に開発された電子顕微鏡技術の進展を概観しな がら、現在では観る道具から分析する装置へと 姿を変えつつある透過電子顕微鏡の最新状況を 紹介する.

2. 20世紀の透過電子顕微鏡

光学顕微鏡の分解能限界はすでに 19 世紀末 にアッベによって明らかにされており,光の波 長よりも小さい物質の観察は不可能と結論され ていたため,原子を観るためには新たな装置の 開発が望まれていた.1924 年にド・ブロイに より物質波の仮説が提出されると,僅か8年後 にドイツのルスカらは電子に対する磁場のレン ズ作用を見出し,光よりも波長の短い電子を用 いた電子顕微鏡を初めて開発した.その後,多 くの研究者たちの努力により,電子顕微鏡の性 能は徐々に向上すると共に,その分解能限界も 明らかにされた.シェルツァーの理論による と,電子顕微鏡の分解能 δ は電子の波長を λ と すると, $\delta = 0.6 \cdot C_s^{1/4} \cdot \lambda^{3/4}$ で表される¹⁾.ここ

倉田博基*

で、C。は電子レンズの球面収差係数と呼ばれ、 レンズの不完全さを表すパラメータである.通 常、電子レンズは円筒対称型の磁場分布を与え る電磁石で作られるが、光学レンズとは異なり 凹レンズ作用を形成することができないため. 球面収差を除去することができなかった.この ような状況から、電子顕微鏡で原子を観察する ことは困難を極め、60年代に著されたファイ ンマンの物理学のテキストにもその問題点が指 摘されている.しかし、今日のナノテクノロ ジーの出現を予言したファインマンは、電子顕 微鏡について以下の興味深いコメントを残して いる.「いつかは、電子レンズに固有の収差を 征服して,新しい種類の電子レンズを思いつく 人があるだろう. そうすれば, 原子の写真を直 接とることもできるようになるだろう. いつか は、沈殿物の色を見たりしないで、原子の位置 を見ることによって化合物を分析できるように なるであろう. $]^{2)}$

このファインマンの予言が実現されるには 40年の歳月を要することになる.しかし,電 子レンズの球面収差の問題は未解決のままでは あったが,70年代に原子を可視化することに は成功した.それは、上述の分解能が電子の波 長に強く依存していることに着目し,電子のエ ネルギーを高くし,波長を短くすることで高分 解能を達成しようとする試みであった.京都大 学化学研究所の植田らのグループは,このよう な超高圧電子顕微鏡を開発し,新たな結像法を

*京都大学化学研究所教授

第275回京都化学者クラブ例会(平成25年5月11日)講演

提案することで,1979年に有機結晶薄膜中の フタロシアニン分子像とそれを構成する原子 の撮影に初めて成功した³⁾.その後の20年間 は高分解能電子顕微鏡学の発展期となり,様々 な材料研究に適用され多くの成果がもたらされ た.この時期の高分解能像はすべて透過電子顕 微鏡(TEM)で撮影されており,その原理は 電子の平面波を結晶に入射し,ブラッグ回折さ れた多数の波の位相をそろえて干渉させるもの で,これが植田らの提案した多波干渉結像法で あった.

一方、TEM とは原理を異にする装置、走査 型透過電子顕微鏡(STEM)もこの時期に登場 した. STEM では、電子線を試料表面上に細 く集束し、それを走査しながら各点を透過した 散乱電子強度を測定し画像化する. 高分解能観 察という観点からは、当初 STEM は TEM に 比べて後れを取っていたが、90年代に入り高 角度円環暗視野(HAADF)法が開発され、一 気に高分解能化が進展し原子分解能観察も実 現された. STEM-HAADF 法の大きな特徴は、 非干渉結像であるという点にある.これは、 TEM のように散乱電子波の干渉を利用しない ため、フォーカス量や試料厚さと言った結像に 関係する条件に鈍感で、なおかつ原子の存在す る位置が明るく、そのコントラストは原子番号 に依存するという特徴を有する. このような利 点があるため像の解釈が容易で.現在では原子 分解能の像を観察する手法としては STEM が 主流になっている.

3. 局所構造解析と元素分析

表題の局所分析という言葉の意味するところ は、電子顕微鏡で観察される非常に微小な領域 の原子配列構造を精確に解析すると同時に、そ こに存在する原子の種類や結合状態を明らかに すると言うことである.これを実現するために 大きな技術革新がなされた.それが,電子レン ズの球面収差補正である.球面収差とはレンズ の中心付近と外側を通過する電子の焦点距離の 違いによるボケである.この球面収差を六極子 レンズの導入により補正しようとする研究が続 けられ,ついに1998年にドイツのグループに より球面収差補正の実現が報告され,200kVの TEM で 0.13nm の分解能が達成された⁴⁾.その 後,球面収差補正技術の商用化に拍車がかか り,日本でも独自の球面収差補正装置が開発さ れ,2007年に 0.063nm の分解能が達成され⁵⁾, 電子顕微鏡は新たな時代へ突入した.

このような球面収差補正電子顕微鏡の登場に より、電子の加速電圧が200kV程度でも0.1nm を切る分解能が容易に達成されるようになっ た. 分解能が向上すると結晶中の原子間隔がよ り精確に決定できると同時に、従来の電子顕微 鏡では観察が困難であった軽元素の可視化も可 能になった. 我々のグループでは、球面収差補 正 STEM を用いた円環明視野(ABF)法と呼 ばれる新しい結像法を適用し, 金属酸化物中の 酸素を含む全元素の位置を精確に決定すること で、エピタキシャル薄膜中の精密構造解析を 行っている、その一例として、図1に GdScOa 基板上にエピタキシャル成長した SrRuO₃ 薄膜 の HAADF 像と ABF 像を示す⁶⁾. HAADF 像 では原子番号に依存したコントラストが得られ るため、基板結晶ではGdとScの原子位置が、 また薄膜内では Sr と Ru の原子位置が明点と して明瞭に観察されている、これより、 基板と 薄膜の界面は破線で示す ScO₂ 面であり、界面 に平行方向の薄膜の格子間隔は GdScO₃ 基板に 整合していることが分かる.一方, ABF 像で は明視野像であるため、HAADF像と比較し コントラストは反転し, 暗点が原子位置に対応

図1 GdScO₃ 基板にエピタキシャル成長した SrRuO₃ 薄膜 (a) 高角度円環暗視野(HAADF)像(b)円環明視野(ABF)像

する.非常に弱いコントラストではあるもの の、ABF 像では酸素原子位置も可視化されて いる.この画像から,酸素原子位置を数 pm の 精度で決定する方法を構築し、基板および薄膜 内の酸素八面体構造の連結角度を導出した. そ の結果、図2に示すように基板内のScO₆八面 体は互いに 156°の角度で連結しているのに対 し、薄膜内の RuO₆ 八面体は界面からその角度 が徐々に大きくなり、約4単位胞の距離を離れ ると168°で一定になっていることが明らかに なった. このような界面近傍における八面体連 結角度の変化は、薄膜の基板に対する格子整合 に起因する構造歪みを緩和するために生じてい るものである.酸素八面体の傾斜や歪みはペロ ブスカイト酸化物の物性を左右する重要な因子 であるが、それが界面近傍の局所領域で決定で きるようになったことは、今後の材料研究に とって強力なツールが生まれたと言っても過言 ではない。

上述の例では原子の種類は像のコントラス

トにより決定されていたが、より直接的に元 素分析を行うためには、電子分光法を組み合 わせる必要がある.透過電子顕微鏡に組み込ま れる代表的な分析法に電子エネルギー損失分光 法(EELS)がある.高速電子が試料に入射し 透過する際、試料との非弾性散乱により一部の

図2 SrRuO₃/GdScO₃のABF 像から求められた酸 素八面体連結角度の変化と界面構造モデル

電子はエネルギーを損失する. EELS では、透 過した電子の損失エネルギーを測定することに より元素分析を行う、特に、試料を構成する原 子の内殻電子を励起する場合. それによる損失 エネルギーは元素に固有の値であるため、損失 エネルギーから容易に定性分析を行うことがで きる. さらに,特定元素を励起した非弾性散乱 電子のみを選択し、その強度分布を2次元的に マッピングすることで元素マップを構築するこ とができる. 特に, STEM に EELS を組み合 わせた場合.電子ビームで走査される各点から 内殻励起スペクトルを計測し、それぞれのスペ クトルから元素信号強度を抽出しマップを構築 する. このような手法は古くから知られていた が、原子分解能でそれを可能にするには、上述 の球面収差補正技術の完成が必要であった.非 弾性散乱確率は極めて小さいため(弾性散乱で ある電子回折強度に比べ3桁以上小さい),入 射電子ビームとしては原子サイズに細く絞れる と同時に,大きな電流量が要求され,そのため には球面収差補正が必要であった.2007年に STEM-EELSによる原子分解能の元素マッピン グが実現され⁷⁾,局所分析という分野が大きく 進展した.

元素マッピング例として SrTiO₃ と SrFeO₂₅ の界面を観察した結果を図3に示す.(a)は HAADF 像である.2つの結晶を構成する元素 のうち原子番号が一番大きな元素は Sr である ため,HAADF 像中では Sr が最も明るい点と して現れているが,両方の結晶に共通して存 在している.4つの Sr 原子サイトの中心に Ti もしくは Fe が配置しているが,Ti と Fe の原 子番号は接近しているため,画像のコントラ ストだけからではどこが界面か特定できない.

図3 (a)SrFeO₂₅/SrTiO₃ 界面の HAADF 像(b)電子エネルギー損失スペクトル(c)Ti マップ(d)Fe マップ

この領域から測定した EELS スペクトルを(b) に示すが、スペクトルには Ti-L₂₃ 殻、O-K 殻、 Fe-L₂₃ 殻励起のピークが観察されている. 電子 走査する各点においてこのようなスペクトルを 測定し、Ti と Fe の元素信号強度を抽出し、そ れぞれの強度分布をマップにしたのが(c)、(d) である. この2枚の元素マップから、界面の位 置(破線)が明確に特定できると同時に、ステッ プ構造が存在していることも分かる. さらに、 界面における元素分布は単原子レベルで急峻な 分布にはなっておらず、Ti と Fe が僅かに相互 拡散しており、特に Fe の Ti サイドへの拡散 が顕著であることが分かる.

4. 今後の展開

上に示した元素マッピングでも分かるよう に,原子分解能で元素の分布が可視化されると いうことは,まさにファインマンが予言してい た「*原子の位置を見ることによって化合物を分 析できる*」ことが実現したことを意味する.原 子を観てその分析もできるようになった現在,次に目指すべき方向はどのあたりにあるのだろ うか?

局所分析の目的には、元素の分析だけではな く結合状態を明らかにすることも含まれてい る.上述の例で言えば、遷移金属元素と酸素と の結合状態を原子レベルで分析できれば究極の 化学分析になると言える.EELS で測定される 内殻電子励起スペクトルの吸収端近傍には、物 質の非占有バンドの状態密度分布を反映した微 細構造が現れる.それを解析することで化学結 合状態について情報を得ることができる.この ような微細構造を詳細に解析するためには、元 素マッピングの場合に比べて、より高いエネル ギー分解能が要求される.そのために、入射電 子線のエネルギーを単色化するモノクロメータ の開発が進展してきており、0.1eVの分解能で スペクトルを計測することが可能になってき た.しかし、モノクロメータを利用するとエネ ルギー分解能は向上するものの、入射電流量が 低下するため、原子レベルの空間分解能でスペ クトル計測を行い、その結果を2次元のマップ にするには長時間の測定時間を要することにな り、装置全体の安定性等が問題になってくる. 現在までのところ、高エネルギー分解能のスペ クトル情報を2次元に可視化した例はないが、 0.9eVのエネルギー分解能で遷移金属酸化物中 の結合状態の異なる酸素のマッピングには成 功しているため⁸⁾、今後はより詳細な結合状態 マップが可視化されることが期待される.

参考文献

- 1) O. Scherzer, J. Appl. Phys. 20, 20 (1949).
- R. Feynman, "ファインマン物理学" 第4巻, p.116 (1965)(岩波書店)
- N. Uyeda, T. Kobayashi, K. Ishizuka and Y. Fujiyoshi, *Chemica Scripta*, 14, 47 (1978-79).
- 4) M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius and K. Urban, *Nature*, **392**, 768 (1998).
- H. Sawada, F. Hosokawa, T. Kaneyama, T. Ishizawa, M. Terano, M. Kawazoe, T. Sannomiya, T. Tomita, Y. Kondo, T. Tanaka, Y. Oshima, Y. Tanishiro, N. Yamamoto and K. Takayanagi, *Jpn. J. Appl. Phys.* 46, L568 (2007).
- 6) R. Aso, D. Kan, Y. Shimakawa and Hiroki Kurata, *Sci. Rep.* **3**, 2214 (2013).
- 7) K. Kimoto, T. Asaka, T. Nagai, M. Saito, Y. Matsui, and K. Ishizuka, *Nature*, **450**, 702 (2007).

8) M. Haruta, K. Kurashima, T. Nagai, H. Komatsu, Y. Shimakawa, H. Kurata, and

K. Kimoto, *Appl. Phys. Lett.* **100**, 163107 (2012).