月例卓話

東アフリカの湖
—— ビクトリア湖の過去と現在 ——

中 西 正 己

はじめに

ビクトリア湖は、予てから一度訪れていた湖である。大学院生の頃、現在、Royal Society of London の会員である J.F. Talling 著のビクトリア湖の水温・水中の光環境の時空間的変化に関し植物プランクトンの光合成活性の応答に関する論文（Talling, 1957, 1965）との出会いは、植物プランクトンの生活を光合成と呼吸過程を通じて理解するという方法論により研究を進めていた自分にとって大きな励みになった。2010年、ILEC（International Lake Environmental Committee、国際湖沼環境委員会）から東アフリカにおける生態系保全と持続可能な利用をめざした「統合的湖沼流域管理（ILBM, Integrated Lake Basin Management）」に関する情報収集を含めた現地調査の誘いを受け、Talling の論文に接してから45年目にビクトリア湖を実感した。現地での聴取と収集した論文等を基にビクトリア湖について紹介する。

ビクトリア湖のあらまし

ビクトリア湖は、アフリカ大地溝帯にあり、地殻の褶曲のようで誕生した構造湖であると言われている。この大地溝帯は、地殻の断層によって出来たようひとつの構造湖、タンザニア湖やマラウイ湖など多くの湖沼が存在する（図1）。ビクトリア湖の年齢は、200万年、40万年とも言われているが、湖底堆積物の分析によると干渉化した時期があり、現在のビクトリア湖は2.5-3.5万年前に生まれたという説もある（Aqwange & Ong’ang’a, 2006）。標高1,134m に位置するビクトリア湖は、表面積、68,800km²、最大深度、84m（平均深度：40m）、水量、2,760km³ を有し、世界の淡水湖ではスベリオール湖に次いで2番目に大きな湖である（表面積、水量は琵琶湖の約100倍の大きさ）。その流域は、ケニア、ウガンダ、タンザニア、ルワンダ及びブルンジの5カ国に及んでおり、184,000km² にも及ぶ。ビクトリア湖には、24の流入河川があるが流出河川はウガンダのジンジャ地区にあるビクトリア・ナイール川である。

ビクトリア湖は、水資源（飲料水、工業・農業用水としてナイール川を通してスーダン、エジプトにまで広く利用されている）、発電、舟運、漁獲漁業（2007年の漁獲高、100万トン/年は淡水湖で世界一、琵琶湖の漁獲高は2千トン/年）、建築材（砂・礫）、エコツアーの拠点として人と係わりを持ってきた（Aqwange & Ong’ang’a, 2006）。

ビクトリア湖周辺には、広大な湿地が分布している。その面積は、10,235km²（ケニア：2,169km²、ウガンダ：3,846km²、タンザニア：4,220km²）で、流域面積の約5.6%に相当する。ビクトリア湖周辺の湿地は、バビルス（Cyperus papyrus）を優占種とする水生植物群落の発達した湿地であり、1）河川等から流入する汚濁物質を物理・化学・生物学的過程を

*京都大学名誉教授

第244回京都化学者クラブ例会（平成22年10月2日）講演

24

海洋化学研究 第24巻第1号 平成23年4月
図1. ビクトリア湖、タンガニーカ湖及びマラウイ湖に代表されるアフリカ大地方帯の湖沼群
を通して濁過・トラップし除去する機能を備えておりビクトリア湖の化学的攪乱（富栄養化・有
害化学物質汚染など）の制御。2）洪水調節機能を有し、湖の物理的攪乱の緩和。3）湖に生
息する多くの魚類の産卵、仔稚魚の生育の場ととして不可欠な存在であり湖の生物的攪乱（生物
多様性の劣化など）の制御に大きな役割を担っ
ている。また、これら湿地は、地域住民との係
わりも大きく農業（乾季に野菜など無施肥栽培
など）、漁業業の場として、湿地に生育する
抽水植物は葉・工芸品・屋根の材料、燃料、家
畜の飼として広く利用されてきた（Kiwango,
2007）。

環境問題
ビクトリア湖における深刻な環境問題として
次の四つが挙げられる。
1. 前述のようにビクトリア湖の生態系機能の
維持に大きな役割を担っている「湿地の乱開
発」である。外資系企業などの参入による湿
地の大規模農耕地化や都市化に伴う道路建設
などが進行しており、湿地のもう一つ重要な機能
の劣化が懸念されている。更に、工芸品の材
料・燃料などの需要拡大によるパビリスなど
抽水植物の乱伐や砂利採取による湿地の荒廃
も問題化している（Aqwange & Ong’ang’a,
2006, Kiwango, 2007）。
2. 流域からの水質汚染物の負荷量の増大によ
る「富栄養化・有害化学物質汚染」が大き
な問題になっている（Scheren et al, 2000）。
2-1. 「富栄養化」を引き起こす栄養塩（窒
素・リン）の負荷量の増大は、1）流域
人口の増加による都市排水増、 2）砂糖・
魚加工・蒸留酒・植物油・製紙・皮なめ
し・金精錬など多種にわたる製造工場か
らの廃水量増、 3）農耕地からの残留化
学肥料などの流出量増、及び、4）高
地にあるルワンダ、ブルンジの大規模農耕
地化政策による森林焼却に起因する大気
経由の大量に窒素・リンを含む降下物の
増大によってもたらされていた。1993-96年頃、
ビクトリア湖へ供給された窒素・
リンの全量の90%以上が大気降下物（窒
素：全負荷量の72％、リン：全負荷量の
22%）及び農耕地（窒素：全負荷量の22
％、リン：全負荷量の55％）起源であっ
たことは日本の湖沼の富栄養化過程と大
きく通うように思われる。

2-2. 「有害化学物質汚染」に関する具体的
な数値は得られていないが、皮をめし工作場から流出するクロム（Cr）やタンニン
サニアの小規模精錬場から流出する水銀（Hg）による重金属汚染や、砂糖・
蒸留酒・植物油製造工場からの廃水中に
大量に含まれる溶存有機物汚染も深刻な
環境問題として取り上げられている。東
アフリカでは、衛生環境改善を目的とし
て先進国が援助で下水処理施設が設置さ
れているが、その新たに機能しておらず
都市排水、工作場排水は処理されず河川を
通過して湖沼に流入している状態である。

3. 外来魚「ナイルパーサ」等外来水生植物
「ホテイアオイ」の定着による生態系攪乱が
大きな問題になっている（Sitoki, et al.,
2010）。

3-1. 「ナイルパーサの導入」：ナイルパーサ
は、1985年頃、現金の増収を目的とし
て意図的に導入された。ナイルパーサは
導入される以前、1980年頃のビクトリア
湖の生態系は500種を超える在来種、カ
ワスズメ科の魚類（ビクトリア湖の魚類
生物量の80％以上を占めていた）を核と
した多様な食物網構造によって機能していた。1985年に市場価値の高い魚食魚,
ナイルバーチが導入されて4年後の1989
年頃からナイルバーチによる高い捕食圧
の影響を受け、動・植物プランクトン食
のカワスズメ科魚類が激減し、従来の食
物網構造が崩壊し不安定な構造に変化し
た。カワスズメ科魚類個体群の激減によ
る捕食圧の低下は、植物プランクトンの
増加を招き、無酸素水域の拡大に繋がっ
た。1989年を境にしてナイルバーチの漁
獲高（全漁獲高の75％）は減少傾向を示
し、2009年には全漁獲高の15％以下に低
下した。一方、1989年以降、在来魚、カ
ワスズメ科魚類の個体群が回復の兆しを
示した。現在のビクトリア湖では、ナイ
ルバーチをトップ捕食者としたカワスズ
メ科魚種・コイ科魚種—動物プランクト
ン—植物プランクトンという新しい比較
的安定した生食連鎖が定着しつつある。

ナイルバーチ個体群の減少の原因には
二つの説がある。一つは、ナイルバーチ
の「乱獲」と「富栄養化により生じた嫌
気的水域の拡大（ナイルバーチの生息環
境の悪化）」によるという説である
(Kolding, et al., 2008)。もう一つは、
「乱獲」と「自然に起こる生態学的適応
—食う・食われる関係のバランスが復
元する過程——」によるという説である
(Sitoki, et al., 2010)。ナイルバーチが
導入され、その捕食圧により動・植物プ
ランクトン食のカワスズメ科魚類の個体
群が激減した結果として植物プランクト
ンの異常増殖を招いた富栄養化現象は、
ダム化により浸水した周辺の土地に含まれ
る大量の栄養塩が流出し、ダム湖が一
時的に富栄養化する現象に似ているとい
う解釈である。この富栄養化現象は、ダ
ム湖が時間と共に安定する過程で栄養塩
も生物間、生物と物理・化学環境間の相
互作用により一定の濃度まで低下する初
期過程であるという説明である。ナイル
バーチの導入による食物網構造の単純化
による生態系機能の回復には、ビク
トリア湖は空間的に大きく、カワスズメ
科魚類が捕食者から逃避し生息できる充
分に広く且つ多様な物理的環境を備えて
いたことも一つの大きな要因であると考
えられる。

3-2. 「ホテイアオイの定着」: ホテイアオ
イは可憐な紫色の花を愛でる観賞用水生
植物として凡そ100年前に南米から導入
された。そのホテイアオイが1989年、ビ
クトリア湖で繁殖しているのを確認され、
その後、急速に分布を拡大していた。
1998年には、その分布は沿岸水域を中心
に200km²を超えた。ホテイアオイの駆
除策として、天敵の昆虫を放したが、そ
の効果は一時的であり、現在もホテイア
オイの繁殖水域は広がっている。ホテイ
アオイの繁茂は、水域の光環境の悪化、
無酸素水域の増大を招くだけでなく水を
介して感染する住血吸虫の宿主である卷
貝の繁殖の場にもなっている（Ofulla et
al., 2010）。また、沿岸水域や湿地に生
育する在来の沈水植物の消滅・劣化をも
引き起こしている（Gichuki, et al.,
2001）。

4. 「水位低下」: ウガンダのジンジャ地区に
位置するビクトリア・ナイール川への流出口に
1959年、ナルバーレ・ダム（Nalhaale Dam）
が建設された後、1999年ウガンダの電力供給

Transactions of The Research Institute of
Oceanography Vol. 24, No. 1, Apr., 2011 27
のためにはルパレア・ダムの下流1.3kmのところに新しくダムが建設された。これら二つのダムの稼働によりビクトリア湖の水位が2.5m低下し、湿地は干陸化しビクトリア湖に生息する魚類の産卵、仔稚魚の成育の場の激減を招き、湿地から湖へ移動する魚類個体数は水位低下以前の20％にまで減少した（Kiwango, 2007）。更に干陸化は抽水植物群落の劣化をも引き起こしている。人為的な水位低下は、それぞれ湖沼・河川固有の物理・化学環境の季節性に適応した生活史をもって生きている生物にとっては大きな問題でありビクトリア湖に限らず世界の多くの水域の大きな環境問題にもなっている。

水温上昇による深層水の嫌気的環境の改善
ビクトリア湖の水温がはじめて測定されたのは1927年である（55地点で測定）。1927年から2008年にかけて水温は上昇を続けている。1927-2000年の73年間の平均水温上昇率は、表層水で0.005°C／年、深層水（＞50m）で0.008°C／年であったが、2000-2008年では、表層水で0.079°C／年、深層水（＞50m）で0.094°C／年と2000年以降の水温上昇率は著しく高くなっている。2000年の成層期（2・3月）、23.9°Cであった深層水の水温は、2008年には25.1°Cに上昇し、水温成層の弱体化が進行している。その結果、成層期に見られた深水層の嫌気的環境が減少した（表層水中の溶存酸素／深層水中の溶存酸素比 = 3.2（2000-2001年）から1.2（2006-2008年）に低下）。ビクトリア湖では、「温化－深層水の温度上昇－水温成層弱体化－深水層の嫌気的環境の改善」というシナリオが出来上がりつつある（Sitoki, et al., 2010）。

植物プランクトンの質・量的変化
1960年代のビクトリア湖は、循環期（8・9月）には全層を通して珪藻が優占し、成層期（2・3月）の表層水では藍藻が優占する植物プランクトン群集であったが、1985年頃から循環期に優占していた珪藻が激減し、年間を通じて藍藻の優占する群集構造に姿を変えた。この原因の一つとして、人間活動による栄養塩の負荷量の増大など水質の変化が考えられている（Lung’ayia et al., 2000）。植物プランクトンの現存量の指標であるクロロフィルa量は、1960-1970年では沿岸水域、沿岸水域で3.0-4.8mg/m³と比較的低い値であったが、1985年には沿岸水域で40mg/m³、沿岸水域で60mg/m³と一桁高くなっている（沿岸水域で得られた最大クロロフィル濃度は650mg/m³）。1990年代に入ると、沿岸水域のクロロフィルa量は徐々に減少し、2000年代には1960年代の濃度よりやや高い値、6-9mg/m³にまで低下している。しかし、沿岸水域のクロロフィルa量は55-70mg/m³と依然として高い値が維持されている。

栄養塩濃度の変化
ビクトリア湖の沿岸水域の硝酸態窒素（NO₃-N）及び溶存リン酸態リン（PO₄-P）濃度は、植物プランクトンのクロロフィルa量が40mg/m³に達した1985年頃（NO₃-N：0.2-2.3ug/l）を除いて増加傾向にある（NO₃-N：1960-1961年、0-10ug/l、2008年、130-140ug/l、PO₄-P：1960-1961、9-50ug/l、2008年、70ug/l）。植物プランクトンの増殖に必要なNO₃-N及びPO₄-Pの濃度が増加しているにも係わらず何故1990年以降クロロフィルa量が減少を続けているのかその原因は明らかではない。クロロフィルa量の減少傾向は、ナイル
パーチ個体群の減少——プランクトン食のカワ
スズメ科魚類個体群の回復が見られた時期にほ
ぼ一致し、カワスズメ科魚類による摂食圧も一
つの原因と考えられる。

ビクトリア湖は、窒素に比べリン濃度の高い
湖である。この傾向が、NO₃-N：PO₄-P 比にも
見られる。2008年の沖帯水域の NO₃-N (99
μg/l)：PO₄-P (70μg/l) 比は 4：1（モル比）
と Redfield 比に比べると極めて低い値である
（2009年の琵琶湖北湖沖帯水域の全窒素：全
リン比は65-81：1, NO₃-N：PO₄-P 比は36-80：
1, 両湖の窒素：リン比は対照的である）。

そ の 他
栄養塩濃度など化学物質の負荷量の増大によ
りビクトリア湖の電気伝導度は高くなると予測
されていたが、過去50年間で大きく変化せず、
100μS/cm 前後の値を維持している。その理由
の一つとして、流入する陽イオン量とビクトリ
ア・ナイル川から流出する陽イオン量がバラン
スしているためと考えられる（琵琶湖の電気伝
導度は130μS/cm 前後）。

この他、近年、流域の農耕地拡大により、土
壤粒子の流入量が増大し河川・ビクトリア湖の
光環境の悪化や魚類の窒息死が問題化している。

引 入 文 献
Victoria-Ecology, Resources and Environment
-Springer Verlag, Berlin. pp. 354
Gichuki, J., F.D. Guebas, J. Mugo, C.O.
Rabuor, L. Triest & F. Dehairs (2001):
Species inventory and the local uses of
the plants and fishes of the Lower Sondu
Miriu wetland of Lake Victoria, Kenya.
Hydrobiolgia. 45: 99-106

Kiwango, Y.A. (2007); The role of Papyrus
plants (Cyperus papyrus) and internal
wave in the nutrient balance of Lake
Victoria, East Africa. Master thesis in
Water and Coastal Management. Univ.
Algarve. Pp 88
Kolding, J., P. van Zweiten, O. Mkumbo, G.
Silbbe & R. Hecky (2008): Are the Lake
Victoria Fisheries threatened by exploi-
tation or eutrophication? in Biamehi, G.
& H.R. Skjoldal (eds): The Ecosystem
Approach to Fisheries. CAB International
London. 309-354
Lung’ayia, H.B.O., A. M’harzi, M. Tackx, J.
Gichuki & J.J. Symoens (2000) Phyto-
plankton community structure and envi-
ronment in the Kenya waters of Lake
Victoria. Freshwater Biology. 43: 529-
543
Muyodi, F.J., R.E. Hecky & J.M. Kitamirike
(2009): Trend in health risks from wa-
ter-related diseases and cyanotoxins in
Uganda portion of Lake Victoria basin.
Lakes & Reservoirs: Research and
Management. 14: 247-257
Ofulla, A.V.O., D. Karanja, R. Omondi, T.
Okurut, A. Matano, T. Jembe, R. Abila,
P. Boera & J. Gichuki (2010): Relative
abundance of mosquitoes and snails asso-
ciated with water hyacinth and hippo
grass in the Nyanza gulf of Lake
Victoria. Lakes & Reservoirs: Research
and Management. 15: 255-271
Scheren, P.A.G.M., H.A. Zanting & A.M.C.
Lemmens (2000): Estimation of water
pollution sources in Lake Victoria, East

