# 3D プリンタによる XRF 分光器の製作

# 小型分光器製作における 3D プリンタの 利用

その場計測が必要とされる分析には携帯可能な 分析装置が必要であり、ハンドヘルド型をはじめ とした分析装置の小型化が進んでいる. 蛍光 X 線分析 (X-ray fluorescence, XRF) でいえば, 2000年代に液体窒素冷却の不要な半導体検出器 を用いたハンドヘルド型 XRF が登場し, 2010年 以降は数ワットの低出力 X 線管を用いて XRF 分 光器を自作する動きも盛んになってきた. 誰でも 短時間に測定可能な小型分析装置が安価に入手・ 利用できるようになった一方で、分析精度・感度 の悪化は一考すべき課題である. その中で近年, 3D プリンタを分析装置の製作に援用することで、 従来装置と遜色ない精度を有し短時間で測定可能 な小型分析装置開発が行われている. ワシントン 大学の Seidler らのグループは、最大出力 50 ワッ トの空冷式低出力 X 線源を用いた X 線吸収分光 装置や波長分散型高分解能蛍光X線分析装置を 開発し、2次元検出器として CMOS カメラを用 いたケミカルシフト測定のできる蛍光 X線分光 器や、EXAFS を短時間で測定できる分光器を市 販している<sup>12)</sup>.これらの装置のデバイスホルダに は3Dプリンタにより製作された樹脂製の部品が 用いられている. 3D プリンタで用いる入力デー タは数値制御による機械加工で用いられるデータ と同形式の 3D CAD (Computer-Aided-Data) デー タであり、今まで機械加工で行っていた装置製作 を 3D プリンタによる簡便な方式にそのまま置換 することができる. 従来の金属加工に加え 3D プ リンタを用いて装置製作過程における幾何学的配 置の検討や試作を行うことで、トライアルアンド

田 中 亮 平\*

エラーの回数を増やすことができ,分析装置の迅 速な開発につながると考えられる.このように分 析装置開発に3Dプリンタを援用することは, laboratory-madeの装置であっても充分な精度・ 感度を有する小型分析装置開発の一助になり得る. 本稿では,当グループにおいて3Dプリンタを用 いて試作を行なってきた分光器<sup>35)</sup>のうち3次元 偏光光学系蛍光X線分析装置や散乱X線の偏光 度測定装置の製作条件や測定結果をもとに,3D プリンタによる分光器製作について得られた知見 を報告する.

#### 2. 3D プリンタでの装置製作

3D プリンタを用いて,3次元偏光光学系 XRF 装置,X線偏光度測定装置の試作を行った.3D プリンタは 3DP-20 (HICTOP)を用いた.図1 に使用した 3D プリンタを示す.この 3D プリン タは熱溶解積層方式であり,熱可塑性樹脂のフィ



図 1. 3D プリンタ

\*京都大学大学院工学研究科材料工学専攻助教

第364回京都科学者クラブ例会(令和2年10月3日)講演



図2. 3次元偏光光学系 XRF 装置

ラメントを熱して溶解し、1層ずつ塗り重ねてい く.企業・法人向けの大型 3D プリンタと比較す ると安価であり数万円程度で購入できる。フィラ メントには主にポリ乳酸(PLA)樹脂やアクリ ロニトリルブタジエンスチレン (ABS) 樹脂が 用いられる. PLA の融点は 180-230℃, ABS の 融点は230-260℃であり、ABS 樹脂を用いる場 合はフィラメント射出ノズルをより高温に保持す る必要がある.図2に示す3次元偏光光学系 XRF 装置のサイズは 20 cm × 20 cm × 20 cm で あり、要した時間は14時間であった、当グルー プでは2017年前半にマシニングセンタで数値制 御加工によりアクリル製分光器(RES-Lab.)を 試作した<sup>6)</sup>. そのときと同じ 3D-CAD データを基 に、液体試料でも測定可能なように X 線を試料 下面から照射できるよう設計変更を施し, Fig.2 の樹脂製分光器を製作した.フィラメントを下か ら積み上げていく積層方式の 3D プリンタでは、 凹凸や空洞など印刷する部品の形状に応じて印刷 方向などの条件を考慮して製作する必要がある. そういった場合であっても、形状に合わせ部品を 分割製作し、後から組み合わせることも容易であ る.次に散乱 X 線の偏光度測定装置を図 3.4 に 示す. 図3は30度ごとに検出角度を変更可能な 検出器ホルダであり、図4のように検出器とX 線管を配置し、各ホルダの凹凸の組み合わせを変 えることで散乱 X 線の検出角度の調整を行うこ



**図3.** 3D プリンタで製作したホルダ.(左)3D-CAD デー タ(右)製作したホルダ



**図4**. 図3のホルダに検出器・X線管を配置した偏光 度測定装置

とができる. 樹脂製部品からの散乱 X 線を防ぐ ため,フィラメントの充填密度を変更し空洞にな るように設計した. このように従来の金属機械加 工では困難と考えられる部品設計を, 3D プリン タを用いて簡便に行うことができる.

#### 3. 偏光光学系蛍光 X 線分析への応用

偏光光学系蛍光 X 線分析は,直線偏光した線 源由来の X 線を励起光として用い,試料から発 生する蛍光 X 線を入射 X 線方向と直交する方向 から検出し,線源由来のバックグラウンド低減さ せることで高感度な分析が可能となる分析方法で ある(図5).土壤,河川水などの環境試料や食 品中の微量有害元素分析などの場面で用いられ, また,鋼材リサイクルに伴う添加元素の循環濃縮 の程度が微量の段階から事前に評価するなど,工 業分析・金属材料分析などへの応用も考えられる.

X線は屈折率がほぼ1であり、ブリュースター 角が45度となるため、X線の入射方向に対し90 度方向に回折・散乱を生じさせることで偏光X



図 5. 偏光光学系

線を生成できる. また発生原理上偏光性を有する 放射光を利用することもできる. 回折現象を用い た方法<sup>78)</sup>では、入射 X 線波長に合わせた分光結 晶を用いて 45 度 Bragg 回折を起こすことで高偏 光度のX線を生成できるため高感度分析が可能 である.しかし、回折条件を満たす波長を有する X線のみが偏光するため特定の元素しか励起でき ず,未知試料分析には不向きである.他方,X線 の散乱現象を用いる方法910 は, 偏光子に金属板 などを用い. 散乱された X 線を励起光として用 いる. この場合, 偏光 X 線は白色光であり未知 試料分析向きだが. 偏光度は回折を用いた方法に 比して劣る. 当グループでは, 弾性散乱断面積に 対して Compton 散乱断面積の割合が大きい軽元 素からなる材料を偏光素子として用いた場合、そ の散乱線が全エネルギー帯で高偏光度を持つこと を図3,4の3Dプリンタ製簡易分光装置を用い ることで実証した<sup>6</sup>. 散乱 X 線の偏光度 p は  $\frac{I_{0^{\circ}} - I_{90^{\circ}}}{I_{0^{\circ}} + I_{90^{\circ}}}$ で評価した.ここで, $I_{0^{\circ}}$ は $I_{90^{\circ}}$ 検出器と直 線偏光 X線の偏光方向のなす角が 0°,90°のとき の散乱X線の強度である.X線管は ULTRALIGHTMAGNUM (ロジウムターゲット. 最大出力4ワット, MOXTEK) を用いた. 測定 には SDD 検出器 (RES-Lab.) を用いた. 図 6 は ホウ素板と鉛板を偏光素子として用いた場合の散 乱 X 線のスペクトルである.ホウ素板を用いた とき,  $I_{90}$ は $I_0$ に比べて大きく減少していること がわかる. また, ホウ素版を用いた場合, Rh Ka 線はほとんどコンプトン散乱されることもわかる. 図7に種々の偏光素子を用いた場合の Rh Ka 線 と Rh KαCompton 線の強度比と散乱 X 線の偏光 度を示す. Compton 線の割合が大きいほど偏光 度も高くなり、軽元素で構成される偏光素子を用 いた場合の方が高い偏光度の X 線を生成するこ とがわかる. 偏光実験では大型放射光施設などの 利用が考えられるが、3Dプリンタを用いて製作 した装置であっても X 線偏光度を測定すること が実験室系においても十分に可能である.



図 6. 散乱 X 線のスペクトル(左)ホウ素板(右)鉛板



図7. 種々の偏光素子を用いた場合の Rh Ka-Compton 線 / RhKa 線強度比と散乱 X 線偏光度

# 4. まとめ

偏光光学系 XRF など種々の分光装置の試作に 3D プリンタを応用し、分析機器開発における 3D プリンタの応用可能性について実際の X 線偏光 度測定を通してみてきた. 高精度が要求される部 分に対しては金属加工した部品を用いる必要があ るが、X線管や検出器を固定するためのホルダ、 本格的な設計の検討を行うためのプロトタイプの 製作に 3D プリンタを活用することは有用である と考えられる. また金属部品から生じる妨害ピー クを低減するための樹脂製部品を、3Dプリンタ を用いて制作することも可能である. 従来の数値 制御による機械加工と 3D プリンタの入力データ が共通であることから、測定目的や対象に応じて 機械加工による金属部品と 3D プリンタによる高 分子樹脂部品を組み合わせることで, 従来装置の 精度・感度を保ちつつ。携帯型分析装置のより簡 便な開発が可能になると考えられる.

## 謝辞

空洞を有する部品作製時の分割印刷方法など 3D プリンタを用いた設計方法・方針に関して指 導をいただきました(地独)京都市産業技術研究 所の竹浪祐介氏に感謝申し上げます.

# 参考文献

- W. M. Holden, O. R. Hoidn, A. S. Ditter, G. T. Seidler, J. Kas, J. L. Stein, B. M. Cossairt, S. A. Kozimor, J. Guo, Y. Ye, M. A. Marcus, and S. Fakra: A compact dispersive refocusing Rowland circle X-ray emission spectrometer for laboratory, synchrotron, and XFEL applications, *Reviews of Scientific Instruments* 88, 073904 (2017).
- 2) D. R. Mortensen and G. T. Seidler: Robust optic alignment in a tilt-free implementation of the Rowland circle spectrometer, *Journal* of Electron Spectroscopy and Related Phenomena 215, 8 (2017).
- T. Sugino, R. Tanaka, and J. Kawai: 3D printed compact XRF spectrometer, (submitted to *International Journal of PIXE*)
- 4) 杉野智裕,田中亮平,河合潤:小型偏光X 線励起による鋼材のXRF測定,X線分析の 進歩49.
- 5)田中亮平,森崎聡志,山下大輔,山本大地, 堤麻央,杉野智裕,河合潤, "3D プリンタに よる分光器の試作",X線分析の進歩49, 53-61 (2018).
- R. Tanaka, T. Sugino, N. Shimura, and J. Kawai: 3D-Polalized XRF Spectrometer with

a 50 kV and 4 W X-Ray Tube, *Analitika i Kontrol*, 22 (2018) 128.

- K. P. Champion, R. N. Whittem: Utilization of Increased Sensitivity of X-ray Fluorescence Spectrometry due to Polarization of the Background Radiation, *Nature*, 199 (1963), 1082.
- H. Aiginger, P. Wobrauschek, C. Brauner: Energy-Dispersive Fluorescence Analysis using Bragg-Reflected Polarized X-Rays, *Nuclear Instruments and Methods*, 120 (1974),

541.

- 9) J. C. Young, R. A. Vane, J. P. Lenehan: Background reduction by polarization in energy dispersive X-ray spectrometry, Western Regional Meeting of the American Chemical Society (1973).
- T. G. Dzubey, B. V. Jarrett, J. M. Jaklevic: Background reduction in X-ray fluorescence spectra using polarization, *Nuclear Instruments and Methods*, 115 (1973), 297.