日本海の生体活性微量金属、大気からの供給に関して

はじめに

我々近畿大学のグループは分析化学でも特に 蛍光分析の歴史が深く, 蛍光試薬を用いて海水 の化学成分分析を継続して行ってきた. その中 でも特に海水中のセレンについては亜セレン酸 と選択的に錯形成する蛍光試薬2.3ジアミノナ フタレンを使って、セレンのスペシエーション を行い. 様々な海域におけるセレンの断面観測 を行ってきた. 最近ではセレンに加え, それ以 外の微量元素にも興味を持ち研究を進めてきた。 研究対象とした元素は Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb などで、これらは生体活性微量金属 と言われ,酵素の活性中心金属となっている元 素であり、生命活動の維持に用いられている。 海洋における鉛直分布については宗林らより多 くの報告があり¹³⁾,一般的に,外洋域では Al, Mn. Co. Pb などはスキャベンジ型, Fe. Ni. Cu. Zn. Cd はリサイクル型分布を示している. 日 本海は日本近海の縁辺海では最も深く、平均水

中口 譲*

深1,350m,最大水深3,700mである.また日本 海は隣接する太平洋や東シナ海とは水深150m 以下の対馬,津軽,宗谷,間宮海況でつながっ ており,水平方向の水塊移動は著しく制限され ている.海底地形では中央部に大和堆と呼ばれ る地形の高まりがあり,その東西にそれぞれ対 馬海盆と大和海盆が,北には日本海盆が存在し ている.Gamoらによる報告によると,日本海 のポテンシャル水温と溶存酸素の分布から,日 本海は水深2,200~2,400m付近から底層にかけ て化学成分的に均一な底層水塊が存在すること を指摘している^{4.5)}.このような日本海海水中 の生体活性微量金属の断面観測を行い,さらに これら元素の起源と考えられる大気エアロゾル 中の捕集および分析を行うこととした.

日本海海水試料中の生体活性微量金属の分析

海水試料の採取点をFig.1 に示したが、CR-34, 41, 47, 58 は日本海、CR-30 はオホーツク海 である.海水試料は海洋研究開発機構白鳳丸 KH-10-3 次研究航海にて CTD-CMS により採取 した.採取後の試料は船内クリーンルーム内で 処理した.溶存態分析用試料は 0.22µm のヌク レオポアフィルターでろ過した海水に高純度 HClを添加し、研究室に持ち帰った.全可溶態 分析用試料は、ろ過は行わず、高純度 HClを 添加し、研究室に持ち帰った.生体活性微量金 属の濃縮は宗林らの方法⁶⁰ によった.また、 元素の分析には ICP-MS を用いた.Fig.2 に溶

*近畿大学理工学部理学科教授,一般財団法人海洋化学研究所理事 第 286 回京都化学者クラブ例会(平成 26 年 4 月 5 日)講演

Fig.2 溶存態 Al, Mn, Ni, Cd の鉛直断面図

存態 Al, Mn, Ni, Cd の分布および鉛直断面図を 示した. 溶存 Al は外洋ではスキャベンジ型分 布を示すことが知られているが,日本海ではそ のような分布を示さず,表層では濃度が低く (0.57~1.71µmol/kg),深度が深くなるにつれ て増加する傾向を示している.一方,オホーツ ク海では表層は比較的濃度は高く (2.12µmol/ kg) であり,2,000m 付近に高濃度ピーク (3.54µmol/kg) が認められた. 溶存 Mn につ いては日本海ではスキャベンジ型分布を占めし た.それに対し,オホーツク海ではスキャベン ジ型分布は示さず,表層 (5.25µmol/kg)の他 1,000~3,000m にかけても高濃度で存在してい た.この分布は溶存鉄とも類似していた.溶存 Ni は日本海、オホーツク海双方の採水点でリ サイクル型分布を示した. 日本海の分布傾向お よび濃度には大きな差は認められなかった。オ ホーツク海では分布傾向はよく似ていたが、濃 度は大きく異なり、1.000m 以深の平均濃度は 日本海では 4.09~4.29µmol/kg に対しオホーツ ク海では 8.95µmol/kg であり約2倍高い値を 示した。溶存Cdは溶存Niと同様に、リサイ クル型分布を示した. 1,000 以深の濃度を比較 すると日本海は0.43~0.46µmol/kg, オホーツ ク海は 1.03µmol/kg であり Ni と同様に約2倍 高い値を示した.表1に日本海およびオホーツ ク海表層における生体活性微量金属の平均値を 示したが、それぞれの海域へは大気を通じて生 体活性微量金属が輸送.供給しているものと考 えられる.

日本海洋上大気エアロゾル中の生体活性微量金属

海洋における元素の供給源として大気を経由 した輸送過程がある.ここでは洋上大気からの 生体活性微量金属の供給量を見積もることとし た.大気エアロゾル試料は白鳳丸 KH-10-02 次 研究航海にて採取した.試料採取点を Fig.3 に 示したが,2010年7月13日~7月21日の期間 に白鳳丸ブリッジ上に設置したエアーサンプ ラー AS-9(紀本電子工業製)にて採取した. このサンプラーは2.5µm 以上(Coarse),2.5µm 以下(Fine)に分離なインパクターを備えてい る.表2に日本海洋上大気エアロゾル中の生体 活性微量金属の平均値を示した.

表1 日本海, オホーツク海表層における溶存態生体活性微量金属濃度

Region	D-Al [nmol/kg]	D-Mn [nmol/kg]	D-Fe [nmol/kg]	D-Co [pmol/kg]	D-Ni [nmol/kg]	D-Cu [nmol/kg]	D-Zn [nmol/kg]	D-Cd [nmol/kg]	D-Pb [pmol/kg]
The Sea of Japan	1.28	2.91	0.38	55.6	3.05	1.48	2.12	0.18	119.5
The Okhotsk Sea	3.54	5.25	0.51	64.3	5.09	1.54	0.58	0.07	60.9

Fig.3 日本海洋上大気エアロゾル試料採取点

表 2	日本海洋上大気エアロゾル中の生体活性微
	量金属濃度(JS3-JS61)

二主々	濃度(unit:ng/m ³)(n=39)					
儿糸石	Fine(<2.5µm)	Coarse(>2.5µm)	Total			
Al	63.1	9.80	72.9			
Cr	28.2	0.00	28.2			
Mn	1.95	0.74	2.69			
Fe	24.3	4.60	28.9			
Со	0.00	0.19	0.19			
Ni	0.51	0.41	0.92			
Cu	0.02	7.75	7.77			
Zn	7.42	0.72	8.14			
Cd	0.03	0.23	0.26			
Pb	0.22	0.55	0.77			

表3 生体活性微量金属の乾性沈着量(JS3-JS61)

元素名	乾性沈着量 (µg m ⁻² day ⁻¹)(n=39)					
	Fine(<2.5µm)	Coarse(>2.5µm)	Total			
Al	5.45	16.9	22.4			
Cr	2.44	0.00	2.44			
Mn	0.17	1.28	1.45			
Fe	2.10	7.95	10.0			
Со	0.00	0.33	0.33			
Ni	0.04	0.71	0.75			
Cu	0.00	13.4	13.4			
Zn	0.64	1.24	1.89			
Cd	0.00	0.40	0.40			
Pb	0.02	0.95	0.97			

$$F = V_d C_a$$

 $\begin{array}{l} C_a: Atmospheric \ concentration\\ V_d: \ Dry \ deposition \ velocity\\ \ Fine \ mode(<\!2.5\mu m): 0.1 \ cm \ s^{-1}\\ \ Coarse \ mode(>2.5\mu m): 2.0 \ cm \ s^{-1} \end{array}$

Al, Mn, Fe, Ni, Zn は Fine 成分の方が濃度は 高く, 例えば Al は Fine 成分が 63ng/m³, Coarse 成分では約 10ng/m³であった. それに 対し Cu, Cd, Pb は Coarse 成分のほうが濃度は 高かった. Cr については Fine 成分, Co につ いては Coarse 成分にのみ見出すことができた.

日本海洋上大気エアロゾル中の乾性沈着量

乾性沈着量は右式⁷⁾ により求めた. なお Dry deposition velocity は Yeatman の値⁸⁾ を 用いた.

結果を表3に示したが、Al, Mn, Fe, Ni, Zn,

元素名 ——	乾性沈着量 (µg m ⁻² day ⁻¹)							
	日本海 (本研究)	東シナ海* ¹	東シナ海* ²	紅海*3	北東大西洋*4	北西地中海*5		
AI	22.4	40±71	1260	936	14	28-279		
Cr	2.44	0.23±0.22		2.63		0.25-1.1		
Mn	1.45	6.7±14.3	21	14.5	2.2	7.7-33		
Fe	10.0	39±50		591		88-384		
Co	0.33	0.069±0.092		0.28		0.05-0.36		
Ni	0.75	0.24±0.29		0.86		1.1-1.4		
Cu	13.4	12±14		1.05		2.2-3.6		
Zn	1.89	19±39	33	4.61	9.5	1.9-205		
Cd	0.40	0.19±0.37		0.03		28-279		
Pb	0.97	2.5±6.7	16		3.4	2.5-5		
1 Hsu et al., (2010) ⁹⁾								
		0)						

表4 日本海, 東シナ海, 航海, 大西洋, 地中海 の乾性沈着量の比較

*5 Guieu et al., (1997)¹³⁾

^{*2} Uematsu et al., (2010)¹⁰⁾ *3 Chen et al., (2008)¹¹⁾

^{*4} Spokes et al., (2001)12)

Pb は Coarse 成分の乾性沈着量が Fine 成分よ り多く、それぞれ 16.9、1.28、7.95、0.71、1.24、0.95 ug m² day⁻¹であった. また Cr は Fine 成分の みで2.44 µg m⁻² day⁻¹, Co, Cd は Coarse 成分 のみでそれぞれ 0.33, 13.4 μ g m⁻² day⁻¹ であった. Fine と Coarse を足し合わせた乾性沈着量を他 の海域の結果と比較してみることとした. 結果 を表4に示した。Alの乾性沈着量は中国大陸 に近い東シナ海より低い値を示した. Cr は紅 海と同程度, Mn は東シナ海, 紅海, 大西洋, 地中海よりも低い値を示した. Fe は他の海域 に比べると低く、東シナ海の4分の1程度であ る. Coは東シナ海に比べると高く、紅海や地 中海と同濃度である. Ni と Cu は東シナ海と同 程度供給される。Zn は東シナ海、紅海、大西 洋より低い. Cd は東シナ海と同程度で地中海 に比べるとかなり低い. Pb は他の海域に比べ るとかなり低い値を示した.

最後に

今回は分析結果の紹介のみであったが,現在, 日本海海水中の全可溶態(塩酸で可溶な粒子状 成分)を分析中である.この結果が出たところ で,日本海における生体活性微量金属の地球化 学サイクルについて,いくつかの知見が得られ るものと思われる.機会があれば,その結果に ついても発表したいと考えている.

引用文献

- Cid, A.P., Urushihara, S., Minami, T., Norisuye, K. and Sohin, Y.(2011) Stoichiometry among bioactive trace metals in seawater on the Bering Sea shelf, J. Ocenogr., 67, 747-764.
- Cid, A.P., Nakatsuka, S., Sohrin, Y.(2012) Stoichiometry among bioactive trace

metals in the Chukchi and Beafort Seas. J. Ocenogr., 68, 985-1001.

- Vu, H.T.D. and Sohrin, Y. (2013) Diverse stoichiometry of dissolved trace metals in the India Ocean, Sci. Rep. 3.
- Gamo, T. and Horibe, Y.(1983) Abyssal circulation in the Japan Sea. J. Ocenogr. Soc. Japan, 39, 220-230.
- 5) Gamo, T., Nozaki, Y., Sakai, H., Nakai, T. and Tsubota, H. (1986) Spatial and temporal variations of water characteristics in the Japan Sea bottom layer. J. Mar. Res., 44, 781-793.
- 6) Sohrin, Y., Urushihara, S., Nakatsuka, S., Kono, T., Higo, E., Minami, T., Norisuye, K and Umetani, S. (2008) Multielemental determination of GEOTRACES key trace metals in seawater by ICPMS after preconcentration using an ethylenediaminetriacetic acid chelating resin. Anal. Chem., 80, 6267-6273.
- Duce , R.A. (1991) The atmospheric input of trace species to the world ocean. Glob. Biogeochem. Cycles, 5, 193-259.
- Yeatman, S.G., Spokes, L.J., Jickells, T.D. 2001. Comparisons of coarse-model. Aerosol nitrate and ammonium at two polluted coastal sites. Atmos. Environ., 35, 1321-1335.
- Hsu, Shih-Chieh et al.,(2010) Sources, solubility, and dry deposition of aerosol trace elements over the East China Sea. Mar. Chem., 120, 116-127.
- Uematsu, M. et al., (2010) Atmospheric transport and deposition of anthropogenic substances from the Asia to the East

China Sea. Mar. Chem., 120, 108-115.

- Chen, Y. et al., (2008) Sources and fluxes of atmospheric trace elements to the Gulf of Aquba, Red Sea. J. Geophys. Res. 113 D05306.doi:10.1029/2007JD009110.
- 12) Spokes, L. et al.,(2001) Atmospheric inputs of trace metals to the northeast Atlantic

Ocean: the importance of southeasterly flow. Ma. Chem., 76, 319-330.

 Guieu, C. et al.,(1997) Atmospheric input of dissolved and particulate metals to the northwestern Mediterranean. Deep-Sea Res. II 44, 655-674.